Бутархайгаас интеграл авах

Интеграл тооцох бодлого сурагчид гэлтгүй оюутнуудад нилээд төвөг учруулдаг. Сэдэв математикийн хичээлдээ хүндэвтэрт ордогийн дээр практикт интегралыг үндсэн дөрвөн үйлдэл шиг тэр болгон хэрэглээд байдаггүйтэй холбоотой. Гэсэн хэдий ч ямарч шатны шалгалт шүүлэгт интегралын бодлого орохгүй байна гэдэг ховор. Интегралыг тооцох ерөнхий аргачлал бол интеграл доорх функцийг хувирган хүснэгтийн интегралын хэлбэрт оруулах. Хэрвээ интеграл доорх функц хүснэгтийн буюу шийдэгдсэн интегралын хэлбэрт орвол бодолт хийгдэнэ.

Хувиргалтыг буруу хийх, тохирох хүснэгтийн интеграл байхгүй бол интегралыг тооцох боломжгүй болно. ЕБС -ын сургуулийн хүрээнд маш цөөн тооны хүснэгтийн интегралыг ашигладаг ч эдгээрийг сурагчид тогтоосон байхыг шаарддаг. Би хувьдаа шалгалт шүүлэгт томьёоны хураамжийг ашиглахыг зөвшөөрөх нь зөв гэж боддог. Хүн маш олон тооны томьёо, чанаруудыг бүгдийг цээжээр мэдэх нь бараг боломжгүй бөгөөд шаардлагагүй зүйл. Харин тэдгээрийг хаана ямар байдлаар ашигладаг гэдгийг ойлгосон л байх хэрэгтэй.
ЕБС -ын хүрээнд ашигладаг хүснэгтийн интегралуудыг үзээрэй. Энэ удаад бутархайгаас интеграл тооцох аргуудыг авч үзье.
Юуны өмнө бутархайн интеграл гэдэг нь гэдгийг тогтоон аваараай. Өөрөөр хэлбэл бутархайн интеграл хүртвэрийн интегралыг хуваарийн интегралд хуваасантай тэнцүү биш гэсэн үг. Бутархайгаас интеграл авахад интеграл доорх функцээс хамаарсан хэдэн аргууд бий.

Арга I

Интеграл доорх функц зөв биш бутархайгаар илэрхийлэгдсэн хоёр олон гишүүнтийн харьцаа байх. Жишээ нь хүртвэрийн зэрэг хуваарийн зэргээс их эсхүл тэнцүү байх. Ийм тохиолдолд хүртвэрийн бүхэл хэсгийг ялгах эсхүл хуваарт буй илэрхийллээс хүртвэрийн илэрхийллийг салгах эсхүл хүртвэрийг хуваарт хуваах хэрэгтэй.

Жишээ

интегралыг тооц.

Бодолт

Сануулга. Хэрвээ хүртвэрт байгаа олон гишүүнтийн зэрэг хуваарийнхаас их байвал бүхэл хэсгийг салгахдаа хүртвэрийг хуваарт баганачлан хуваах нь илүү тохиромжтой.

Арга II

хэлбэрийн бутархайнуудад шинэ хувьсагч оруулах эсхүл тухайн интегралыг хүснэгтийн интегралд хувиргах аргуудыг хэрэглэдэг.

Жишээ

интегралыг бод.

Бодолт

Арга III

хэлбэрийн интегралуудыг хуваарт бүрэн квадратыг ялган хүснэгтийн интегралд шилжүүлэн боддог.

Жишээ

бол
Бодолт

Жишээ ЭЕШ - 2018, D36

бол f(x) функцийг ол.

Бодолт

Арга IV

хэлбэрийн интегралуудад дараах аргачлалыг ашиглана. Хүртвэрээс хуваарийн уламжлалыг ялгаад дараа нь бутархайг гишүүнчлэн хуваавал нэгийнх нь хүртвэрт тогтмол харин нөгөөгийнх нь хүртвэрт хуваарийн уламжлал бүхий хоёр интегралын нийлбэр үүснэ. Тогтмол хүртвэртэй бутархайтай интегралыг III -р аргаар харин нөгөө интегралыг орлуулах аргаар олдог.

Жишээ

бол a+b+c+d+e+f=?
Бодолт

Бодлого бодох аргуудыг сайн эзэмшсэн байхад ямарч бодлогыг цаг алдахгүй хурдан шийдэх боломжтой тул онолын мэдлэгээ зузаатгаж байхыг зөвлөе.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1677 Нийтийн

Ямар нэгэн зүйл /обьект/ эсхүл хийгдэж буй үйлдлийн тоог мэдэхийн тулд тэдгээрийг тоолох хэрэгтэй. Тоолол гэдэг нь ямар нэгэн тоон үзүүлэлтийг тооцох үйлдэл эсхүл тооллогоор илэрхийлэгдэнэ. Тоололд орж буй тусдаа обьект бүр эсхүл тусдаа үйлдэл бүрийг нэгж гэнэ. Нэгж гэдэг нь тусдаа обьектын хийсвэрлэлийг илэрхийлэх тоо юм. Тоололын үр дүн буюу тоологдсон нэгжийн нийлбэрийг тоо гэж нэрлэнэ.

  Нээгдсэн тоо: 14664 Бүртгүүлэх

Бид өмнө нь хязгаар гэж юу болох энгийн хязгааруудыг хэрхэн бодох талаар авч үзсэн. Хязгаарыг ойлгох нь хичээлд үзсэн жишээнүүд их энгийн байсан бөгөөд ийм бэлэгүүд практикт ховор тохиолдох тухай дурдсан. Тэгэхлээр энэ хичээлд хязгаарын илүү нарийн төрлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе.

∞/∞ хэлбэрийн тодорхойгүй төрлийн хязгаарыг бодох.

x->∞ байх үед функц нь хүртвэр, хуваардаа олон гишүүнтийг агуулсан хязгааруудыг авч үзье.

Жишээ 1.

хязгаарыг тооцоол.

  Нээгдсэн тоо: 2696 Төлбөртэй

Порпорционал хэмжээнүүд.

Хэрвээ x ба y хувьсагчид шууд порпорционал бол тэдгээрийн хоорондын функционал хамаарал нь

y=kx

томьёогоор илэрхийлэгдэнэ. Энд k - тогтмол хэмжээ. / порпорционалын коэффициент / Шууд порпорционал хамаарлын график нь координатын эхийг дайрсан , X тэнхлэгтэй тангенс нь k тай тэнцүү өнцөг үүсгэсэн шулуун байна. / Зур. 8 / Иймээс порпорционалын коэффициентыг бас өнцгийн коэффициент гэж нэрлэдэг. / Зур. 8 / д k=1/3, k=1, k=-3 гурван графикийг үзүүлсэн байна.

  Нээгдсэн тоо: 3979 Төлбөртэй

Тригнометрийн функцуудийн чанарыг сайн мэдэж байх нь бодлого бодоход ихээхэн тустай. Чанарыг сайн ойлгоогүйгээс бодлогын шийдийг тодорхойлох, илэрхийлэл хувиргах, томьёонуудыг хэрэглэхдээ алдаа гаргах өндөр магадлалтай. Сайтад тавигдсан тригнометр сэдвийн бүх хичээлүүдийг сайтар үзэн холбогдох бодлогуудын бодолтыг ойлгосон байхад танд энэ сэдвээс айх зүйл байхгүй. Ингээд хичээлээ функцийн тэгш, сондгой чанарын тухай тодорхойлолтоос эхлэе.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 235

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 323

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 285

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 384

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 426

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 452

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 524

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 603

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 632

 
Энэ долоо хоногт

Тэмцээнд 16 шатарчин оролцсон. Нэгийн давааны хуваарийн хичнээн хувилбар байж болох вэ? / Хуьаарьт дор хаяж нэг өрөгт тоглох хүмүүс нь ялгаатай бол хувилбар гэж тооцно. Тоглох өнгө, ширээний дугаарыг тооцохгүй/

Нээгдсэн тоо : 1302

 

Нээгдсэн тоо : 1071

 

prob02_187_01 илэрхийллийг хялбарчил.

Нээгдсэн тоо : 182