Бутархайгаас интеграл авах

Интеграл тооцох бодлого сурагчид гэлтгүй оюутнуудад нилээд төвөг учруулдаг. Сэдэв математикийн хичээлдээ хүндэвтэрт ордогийн дээр практикт интегралыг үндсэн дөрвөн үйлдэл шиг тэр болгон хэрэглээд байдаггүйтэй холбоотой. Гэсэн хэдий ч ямарч шатны шалгалт шүүлэгт интегралын бодлого орохгүй байна гэдэг ховор. Интегралыг тооцох ерөнхий аргачлал бол интеграл доорх функцийг хувирган хүснэгтийн интегралын хэлбэрт оруулах. Хэрвээ интеграл доорх функц хүснэгтийн буюу шийдэгдсэн интегралын хэлбэрт орвол бодолт хийгдэнэ.

Хувиргалтыг буруу хийх, тохирох хүснэгтийн интеграл байхгүй бол интегралыг тооцох боломжгүй болно. ЕБС -ын сургуулийн хүрээнд маш цөөн тооны хүснэгтийн интегралыг ашигладаг ч эдгээрийг сурагчид тогтоосон байхыг шаарддаг. Би хувьдаа шалгалт шүүлэгт томьёоны хураамжийг ашиглахыг зөвшөөрөх нь зөв гэж боддог. Хүн маш олон тооны томьёо, чанаруудыг бүгдийг цээжээр мэдэх нь бараг боломжгүй бөгөөд шаардлагагүй зүйл. Харин тэдгээрийг хаана ямар байдлаар ашигладаг гэдгийг ойлгосон л байх хэрэгтэй.
ЕБС -ын хүрээнд ашигладаг хүснэгтийн интегралуудыг үзээрэй. Энэ удаад бутархайгаас интеграл тооцох аргуудыг авч үзье.
Юуны өмнө бутархайн интеграл гэдэг нь гэдгийг тогтоон аваараай. Өөрөөр хэлбэл бутархайн интеграл хүртвэрийн интегралыг хуваарийн интегралд хуваасантай тэнцүү биш гэсэн үг. Бутархайгаас интеграл авахад интеграл доорх функцээс хамаарсан хэдэн аргууд бий.

Арга I

Интеграл доорх функц зөв биш бутархайгаар илэрхийлэгдсэн хоёр олон гишүүнтийн харьцаа байх. Жишээ нь хүртвэрийн зэрэг хуваарийн зэргээс их эсхүл тэнцүү байх. Ийм тохиолдолд хүртвэрийн бүхэл хэсгийг ялгах эсхүл хуваарт буй илэрхийллээс хүртвэрийн илэрхийллийг салгах эсхүл хүртвэрийг хуваарт хуваах хэрэгтэй.

Жишээ

интегралыг тооц.

Бодолт

Сануулга. Хэрвээ хүртвэрт байгаа олон гишүүнтийн зэрэг хуваарийнхаас их байвал бүхэл хэсгийг салгахдаа хүртвэрийг хуваарт баганачлан хуваах нь илүү тохиромжтой.

Арга II

хэлбэрийн бутархайнуудад шинэ хувьсагч оруулах эсхүл тухайн интегралыг хүснэгтийн интегралд хувиргах аргуудыг хэрэглэдэг.

Жишээ

интегралыг бод.

Бодолт

Арга III

хэлбэрийн интегралуудыг хуваарт бүрэн квадратыг ялган хүснэгтийн интегралд шилжүүлэн боддог.

Жишээ

бол
Бодолт

Жишээ ЭЕШ - 2018, D36

бол f(x) функцийг ол.

Бодолт

Арга IV

хэлбэрийн интегралуудад дараах аргачлалыг ашиглана. Хүртвэрээс хуваарийн уламжлалыг ялгаад дараа нь бутархайг гишүүнчлэн хуваавал нэгийнх нь хүртвэрт тогтмол харин нөгөөгийнх нь хүртвэрт хуваарийн уламжлал бүхий хоёр интегралын нийлбэр үүснэ. Тогтмол хүртвэртэй бутархайтай интегралыг III -р аргаар харин нөгөө интегралыг орлуулах аргаар олдог.

Жишээ

бол a+b+c+d+e+f=?
Бодолт

Бодлого бодох аргуудыг сайн эзэмшсэн байхад ямарч бодлогыг цаг алдахгүй хурдан шийдэх боломжтой тул онолын мэдлэгээ зузаатгаж байхыг зөвлөе.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3439 Төлбөртэй

Тригнометрийн функцуудийн чанарыг сайн мэдэж байх нь бодлого бодоход ихээхэн тустай. Чанарыг сайн ойлгоогүйгээс бодлогын шийдийг тодорхойлох, илэрхийлэл хувиргах, томьёонуудыг хэрэглэхдээ алдаа гаргах өндөр магадлалтай. Сайтад тавигдсан тригнометр сэдвийн бүх хичээлүүдийг сайтар үзэн холбогдох бодлогуудын бодолтыг ойлгосон байхад танд энэ сэдвээс айх зүйл байхгүй. Ингээд хичээлээ функцийн тэгш, сондгой чанарын тухай тодорхойлолтоос эхлэе.

  Нээгдсэн тоо: 4992 Бүртгүүлэх

Олонлогийг латин цагаан толгойн том, элементийг жижиг үсгээр нь тэмдэглэдэг. энэ бичлэг нь a нь R олонлогийн элемент ба энэ олонлогт харьяалагдана гэснийг илэрхийлнэ. Эсрэгээр a нь R олонлогт харьяалагдахгүй гэдгийг гэж бичнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг эсрэгээрээ B олонлогийн элемент бүр нь A олонлогт харьяалагддаг байвал эдгээрийг тэнцүү олонлогууд (A=B) гэнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг бол A олонлог нь B олонлогт багтсан эсвэл A олонлог нь B олонлогийн дэд олонлог гэж хэлдэг. /Зур. 1/ Энэ тохиолдлыг гэж бичнэ. Дурын A олонлогийн хувьд багтаалт хүчинтэй.

  Нээгдсэн тоо: 355 Төлбөртэй

Алгебрт эерэг, сөрөг тоонууд гэсэн ухагдхуун орж ирснээр үржих хуваах үйлдэлд тэмдгийг тодорхойлохын тулд арай өөр дүрмийг ашигладаг. Үржих, хуваах үйлдлийн тухайд өөрчлөлт байхгүй ч тэмдгийг тодорхойлох аргачлал эхлээд сурагчдад хүндрэл үүсгэх талтай. Гэхдээ хичээлийг үзэн багахан дадлага хийхэд бүх зүйл энгийн гэдгийг ойлгоно.

  Нээгдсэн тоо: 1432 Төлбөртэй

Хавтгайн геометрийн дүрсүүдээс сурагчид хамгийн хэцүү, ойлгомжгүй, асуудал үүсгэдэг дүрс бол тойрог. Гурвалжин, тэгш өнцөгт, квадрат, ромбо, трапец гэх мэт дүрсүүдийн тухайд сурагчид арай илүү ойлгосон байдаг. Хичээлээр тойргийн элементүүдийн талаар ойлголт өгөхийг хичээе.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 150

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 196

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124