Таррашийн хамгаалалт

Хаалттай гарааны төрөлд багтах бэрсний гамбитийн с4 хүүний хаяаг хар аваагүй тохиолдолд үүсдэг хувилбарыг татагалзсан бэрсний гамбит гэж нарлэдэг. XX зууны эхэнд хар тэнцүүхэн байрлалтай болох ганц зам бол төвийн төлөө хүүгээр тэмцэх гэх онол давамгайлж байснаас энэхүү хамгаалалт хамгийн өргөн дэлгэрсэн гарааны нэг болсон. Энэ удаад Татгалзсан бэрсний гамбитийн Тарашийн хамгаалалтын талаар авч үзнэ.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1315 Нийтийн

Энэ нийтлэлээр Нимцовичийн "Миний систем" номын хоёрдугаар хэсэг буюу байрлалын тоглолт хэсэг эхлэж байгаа юм. Өмнөх нийтлэлүүдээр шатрын стратегийн элементүүдийн талаар Нимцовичийн дэвшүүлсэн онолын орчуулгыг хүргэсэн бол энэ хэсэгт Нимцовичийн системийг тоглолтод хэрхэн ашиглахыг толилуулах болно.

  Нээгдсэн тоо: 2651 Бүртгүүлэх

Шатрын хөлөг дээр тэмцэл явагдахад шатрууд нэг нэгэндээ ихээхэн нөлөөлдөг. Шатруудын хоорондын уялдаа холбоог тоглогчид өөрсдийн нүүдлээрээ бий болгоно. Шатрын тулаан нь үндсэндээ дайралт хийх энэхүү дайралтыг няцаах хамгаалалт байдлаар явагдана.
Тоглолт эхлэхэд өрсөлдөгчид ижил тооны дайралт болон хамгаалалтын хүчтэй байх ба тоглолтын явцад тоглогчийн ур чадвараас шалтгаалан хүчний харьцаа өөрчлөгдөх болно. Ямар ч дайралтын үед дайралтанд өртөж байгаа шатраа доорх аргуудын аль нэгээр хамгаалах боломж олдоно.

  Нээгдсэн тоо: 585 Төлбөртэй

Орчин үед бэрсний гамбитийн эсрэг маш өргөнөөр ашигладаг хамгаалалтын нэг бол Грюнфельдийн хамгаалалт. Иймээс шатар сонирхогчид, эхлэн суралцагчид хамгаалалтын системийн сайтар судлан суралцахыг зөвлөе. Жишээнд мастеруудын төрөл бүрийн шатны тэмцээнд тоглосон өргүүд орсон тул нүүдэл бүрийг сайн судлан ойлгон авахыг оролдоорой. Энэ удаад Грюнфельдийн хамгаалалтын жишээ өргүүдээс үргэлжлүүлэн танилцуулъя.

[Event "Минск, 1987."] [White "Юсупов"] [Black "Цешковский"] 1. d4 Nf6 2. c4 g6 3. Nc3 d5 4. cxd5 Nxd5 5. e4 Nxc3 6. bxc3 Bg7 7. Bc4 O-O 8. Ne2 c5 9. O-O Nc6 10. Be3 Na5 11. Bd3 b6 12. Rc1 ({хүүний хаяаг авах нь цагаанд ашиггүй.} 12. dxc5? bxc5 13. Bxc5 Qc7 14. Bd4 e5 15. Be3 Nc4 {-ийн дараагаар Роха - Керес (1964/65) нарын өрөгт хар сайн нөхөөсийг авсан.}) (12. f4?! cxd4 13. cxd4 f5! {хувилбарт харын сонгосон нүүдлийн дарааллын оновчтой нь илэрнэ. Цагаан} 14. exf5 ({харин} 14. Qe1 e6 15. Rd1 Bb7 {??? дараачаар хар сайн тоглолттой. (Хольм - Пршибыл, 1974)}) 14... Bxf5 15. Bxf5 gxf5 16. Ng3 {гэж үргэлжлүүлж чадахгүй. d4 хүү сул.}) ({өрөгт хийгдсэн нүүдлээс гадна} 12. Qd2 {гэж бас тоглодог.}) 12... Qc7 ({хувилбарын санаанд илүү тохирох нь} 12... Bb7 {гээд цааш} 13. d5 c4! 14. Bc2 e6 {дараагаар нарийн тоглолттой.}) 13. Qd2 ({энд} 13. f4 {гэж тоглож болно.} f5 {-д} 14. exf5 Bxf5 15. Bxf5 gxf5 16. dxc5! Rad8 17. cxb6 axb6 18. Bd4 {гээд цагаан давуутай. (Спасский - Шмидт, 1968)}) 13... Bb7 14. Bh6 Rad8 15. h4! Qd6?! {сайнгүй хариулт.} ({хүчтэй нь} 15... Nc6 {гээд} 16. d5 Ne5 {-ын дараа Юсуповийн бодлоор цагаан нилээд илүү байна. Гэхдээ удаан тоглолт бий.}) 16. d5 c4 (16... e6 {гэвэл} 17. c4!) 17. Bc2 e6?! {тоглолтыг задлах нь цагаанд ашигтай.} ({Юсупов} 17... e5 {гэж хориглон тоглохыг зөвөлсөн.}) 18. Bxg7 Kxg7 19. f4! f5 (19... exd5 {гэвэл цагаан} 20. e5! Qe7 21. h5 {гээд хүчтэй дайралттай.}) 20. Nd4! fxe4 21. dxe6 Nc6 {оройтсон.} 22. f5! {цагааны дайралтыг зогсоохгүй.} Nxd4 23. cxd4 Qe7 (23... Qxd4+ {гэвэл} 24.Qxd4+ Rxd4 25. e7 Re8 26. Ba4 {гээд шууд хожигдоно.}) 24. Ba4! {шийдвэрлэх нүүдэл.} Rxf5 (24... gxf5 {гэвэл} 25. Qg5+) ({эсхүл} 24... Rd5 25. fxg6 hxg6 26. Rxf8 Qxf8 27. Rf1 Rf5 28. Rxf5 {гээд дуусна.}) 25. Rxf5 gxf5 26. Qf4! Bd5 27. Qe5+ Kg6 ({эсхүл} 27... Qf6 28. e7!) (27... Kg8 {гэвэл өрөгт хийгдсэн} 28. Rc3 {шийднэ.}) 28. Rc3 f4 29. h5+! {гээд хар буусан.}

  Нээгдсэн тоо: 2238 Нийтийн

Туршлага багатай шатарчдын тоглолтыг ажиглаж байхад шатарчид гарааны зарчмын дагуу зөв нүүдлүүдийг хийн өргийн эхлэлийг амжилттай давсаны дараа миттельшпилд шилжих үед захын хүүнүүдээр нүүх, бэрсээр ямар нэгэн үндэслэлгүй дайралт хийх зэргээр сонин нүүдлүүд хийж эхэлдэг. Өөрөөр хэлбэл зорилгогүй мэт болдог.
Туршлагатай шатарчид ихэнхдээ үүссэн нөхцөл байдлыг дүгнэн үзээд ямар нэгэн цаашдын төлөвлөгөөг сонгодог. Тодорхой онол болон практикийн мэдлэгтэй шатарчид л үүссэн нөхцөлд үнэлгээ өгөн төлөвлөгөөг сонгож чаддаг. Тэгвэл эхлэн суралцагчид яах вэ? Шатрын өргийн үндсэн тулаан болдог миттельшпилд тэд яах хэрэгтэй вэ? гэсэн асуулт зүй ёсоор гарч ирнэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 209

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 292

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 250

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 353

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 401

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 423

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 486

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 554

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 581

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1099

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 304