Алгебр арифметикийн ялгаа

Алгебр (арифметикийн адилаар) тоотой холбоотой төрөл бүрийн асуудлын шийдийг олох шинжлэх ухаан. Арифметик, алгебрын хоорондоо нилээд ялгаатай. Алгебр тоотой биш тоог төлөөлөх үсгүүдтэй голлон ажилладаг бол арифметикт тодорхой тоонууд дээр тухайн асуудлын шийдлийг олоход чиглэдэг. Эндээс эдгээр хоёр салбар ухааны гол ялгаа гэвэл алгебр асуудлын ерөнхий шийдлийг харин арифметик асуудлын тухайн тохиолдлын шийдлийг судалдагт оршино.

Алгебр арифметикийн ялгааг илүү ойлгомжтой тайлбарлахын тулд дараах бодлогыг аваад үзье.

Хоёр аялагч бие биеэ угталцан хоорондоо 240 км зайтай хоёр хотоос нэгэн зэрэг гарчээ. Эхнийх нь өдөрт 25 км харин хоёрдахь нь 35 км явдаг бол тэд хэд хоногийн дараа уулзах вэ?

Арифметик аргаар дээрх бодлогыг бодъё.

  • Аялагчдын өдөрт туулах замыг өгсөн болохоор тэд өдөрт нийлээд 25+35=60 км замыг туулна.
  • Тэгвэл тэднийг тусгаарлаж буй 240 км замыг тэд 240:60=4 хоногт туулан уулзана гээд шийдийг олно.

Тэгвэл дээрх бодлогыг 240, 25, 35 гэсэн гурван тооны хувьд биш илүү ерөнхий байдлаар шийдэх гээд үзье. Өөрөөр хэлбэл бодлогын өгүүлбэр дэх 240, 25, 35 тоонуудыг a, b, c үсгээр сольё. Өөрөөр хэлбэл a - хоёр хотын хоорондын зай харин b  - эхний аялагчийн c - хоёрдахь аялагчийн өдөрт туулах зай гэсэн үг.
Ийм ерөнхий тохиолдолд алгебрийн аргачлал орж ирэх ч бодолтын алгоритм өөрчлөгдөхгүй.

  • Аялагчдын өдөрт туулах нийт зам b+c байна.
  • Аялагчид өдөрт нийлээд b+c зайг туулдаг бол тэд нийт a зайг гээд бодлогын шийдийг олно.

Сүүлийн шийд бол дээрх төрлийн бодлогын ерөнхий шийд юм. Одоо энэ шийдэд a=240, b=25, c=35 тоонуудыг тавивал 4 гэж л гарна.
Үсгэн буюу ерөнхий шийдэл тоон шийдэл буюу тухайн тохиолдлын шийдлээс

  • Ерөнхий шийдэл дээрхтэй төстэй нэг төрлийн бүх бодлогод тохирно. Жишээ нь 240, 25, 35 тоонуудын оронд 360, 20, 40 тоонууд өгөгдсөн бол тоонуудыг ерөнхий шийдэд тавиад тооцоход гэж гарна.
  • Үсгэн илэрхийллээр асуудлын шийдийг олоход өгөгдсөн тоонууд дээр ямар үйлдлийг ямар дарааллаар хийх нь маш тодорхой харагдана.
  • Дээрхтэй төстэй асуудлын шийдэлд тухайн биетийн нэр эсхүл ойлголт, бодлогын өгөгдлүүд зэрэг нь тийм ч гол утгыг илэрхийлэхгүй байгааг анзаарвал бодлогыг ерөнхий хэлбэрт шилжүүлэх боломжийг нээдэг зэргээр давуу талуудтай.

Иймээс дээрх бодлогыг дараах байдлаар
Жишээ нь

хоёр биет хоорондоо a нэгж зайтай (нэгжээр метр, километр, өртөө гэх мэтээр) хоёр газраас нэг зэрэг бие биеэ угталцан гарчээ. Эхний биет нэгж хугацаанд (хоног, цаг, минут г.м) b, хоёрдахь биет c нэгж зайг туулна. Тэгвэл тэд хичнээн нэгж хугацааны дараа уулзах вэ? гэж

нэгдсэн хэлбэрт шилжүүлж болно.
Бодлогын шийдэл бол байх нь ойлгомжтой. Энэ бичлэгийг ерөнхий томьёо гэж нэрлэдэг. Томьёо бидэнд дээрхтэй ижил нөхцөлтэй дурын бодлогыг ямар нэгэн үндэслэл гаргалгүйгээр шууд нэг тооцооллоор шийдэх боломжийг олгоно.
Эндээс алгебр тоотой хамааралтай асуудлын ерөнхий шийдийг олон эдгээр асуудлуудыг нэгтгэх зорилготой. Үүний зэрэгцээ алгебр эдгээр ерөнхий шийдлийг хамгийн энгийн ойлгомжтой хэлбэрт оруулах асуудлыг судлахын зэрэгцээ нэг үсгэн илэрхийллийг түүнтэй адил өөр үсгэн хэлбэрт оруулахад сургадаг.
Арифметикаас алгебрт шилжих үед сурагчид нилээд сандардаг. Тоонуудын оронд үсэг орж ирсэн болохоос алгебр бол арифметикийн үргэлжлэл асуудал болон түүний шийдлийг ерөнхийлөлд оруулах л салбар ухаан тул бүр ч илүү сонирхолтой гоё хичээл.
Алгебр тийм хүнд биш гэдгийг дараагийн хичээлүүдээс ойлгон математикт дуртай болно гэдэгт итгэж байна.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2754 Бүртгүүлэх

Эерэг тоонуудын хувьд нэмэх, хасах үйлдлүүд энгийн боловч алгебрт эерэг, сөрөг тоонууд ойлголт орж ирснээр нэмэх хасах үйлдэл сурагчдыг ихээр сандралд оруулдаг. Энд хэдэн дүрмийг сайн ойлгоход л бүх зүйл хэвийн болно.

  Нээгдсэн тоо: 4311 Бүртгүүлэх

Үйлдлийн дараалал. Хаалт

Үйлдлүүдийн үр дүн нь тэдгээрийн дарааллаас хамаардаг.

Жишээ.  8 – 3 + 4 = 9

Хэрвээ эхлээд 3 дээр 4 -г нэмээд гарсан нийлбэрийг 8 аас хасвал 1 гарна. Иймд зөв үр дүн гаргахын тулд тодорхой үйлдлийн дараалал тогтоосон байх шаардлагатай. Ямар дараалалаар үйлдлийг хийхийг хаалтын тусламжтайгаар тогтоож өгдөг. Хэрвээ бичлэгт хаалт оролцоогүй тохиолдолд үйлдлүүд доорхи дарааллаар хийгдэнэ.

  1. Зэрэг дэвшүүлэх , язгуураас гаргах
  2. Үржүүлэх , хуваах
  3. Нэмэх , хасах

  Нээгдсэн тоо: 7274 Нийтийн

Тэмдэглэгээ

a, b, c - талууд, A, B, C - өнцгүүд, p=(a+b+c)/2 - хагас периметр, h - өндөр, S - талбай, R - багтаасан тойргийн радиус, r - багтсан тойргийн радиус.

Косинусын теорем

  Нээгдсэн тоо: 11767 Нийтийн

Гурвалжны гайхамшигт цэгүүдээс сурагчдын хамгийн бага мэдээлэлтэй байдаг нь орто төв, орто гурвалжин байдаг. Гэтэл элсэлтийн шалгалт дээр ийм төрлийн бодлогууд ирэх тохиолдол байна. Иймээс энэ хичээлээр гурвалжны орто төв гэж юуг хэлэх түүнийг бодлогод хэрхэн ашиглахыг элсэлтийн ерөнхий шалгалтанд ирж байсан бодлогууд дээр тайлбарлах болно.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 12

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 14

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 15

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 13

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 21

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2219

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 549