Алгебр арифметикийн ялгаа

Алгебр (арифметикийн адилаар) тоотой холбоотой төрөл бүрийн асуудлын шийдийг олох шинжлэх ухаан. Арифметик, алгебрын хоорондоо нилээд ялгаатай. Алгебр тоотой биш тоог төлөөлөх үсгүүдтэй голлон ажилладаг бол арифметикт тодорхой тоонууд дээр тухайн асуудлын шийдлийг олоход чиглэдэг. Эндээс эдгээр хоёр салбар ухааны гол ялгаа гэвэл алгебр асуудлын ерөнхий шийдлийг харин арифметик асуудлын тухайн тохиолдлын шийдлийг судалдагт оршино.

Алгебр арифметикийн ялгааг илүү ойлгомжтой тайлбарлахын тулд дараах бодлогыг аваад үзье.

Хоёр аялагч бие биеэ угталцан хоорондоо 240 км зайтай хоёр хотоос нэгэн зэрэг гарчээ. Эхнийх нь өдөрт 25 км харин хоёрдахь нь 35 км явдаг бол тэд хэд хоногийн дараа уулзах вэ?

Арифметик аргаар дээрх бодлогыг бодъё.

  • Аялагчдын өдөрт туулах замыг өгсөн болохоор тэд өдөрт нийлээд 25+35=60 км замыг туулна.
  • Тэгвэл тэднийг тусгаарлаж буй 240 км замыг тэд 240:60=4 хоногт туулан уулзана гээд шийдийг олно.

Тэгвэл дээрх бодлогыг 240, 25, 35 гэсэн гурван тооны хувьд биш илүү ерөнхий байдлаар шийдэх гээд үзье. Өөрөөр хэлбэл бодлогын өгүүлбэр дэх 240, 25, 35 тоонуудыг a, b, c үсгээр сольё. Өөрөөр хэлбэл a - хоёр хотын хоорондын зай харин b  - эхний аялагчийн c - хоёрдахь аялагчийн өдөрт туулах зай гэсэн үг.
Ийм ерөнхий тохиолдолд алгебрийн аргачлал орж ирэх ч бодолтын алгоритм өөрчлөгдөхгүй.

  • Аялагчдын өдөрт туулах нийт зам b+c байна.
  • Аялагчид өдөрт нийлээд b+c зайг туулдаг бол тэд нийт a зайг гээд бодлогын шийдийг олно.

Сүүлийн шийд бол дээрх төрлийн бодлогын ерөнхий шийд юм. Одоо энэ шийдэд a=240, b=25, c=35 тоонуудыг тавивал 4 гэж л гарна.
Үсгэн буюу ерөнхий шийдэл тоон шийдэл буюу тухайн тохиолдлын шийдлээс

  • Ерөнхий шийдэл дээрхтэй төстэй нэг төрлийн бүх бодлогод тохирно. Жишээ нь 240, 25, 35 тоонуудын оронд 360, 20, 40 тоонууд өгөгдсөн бол тоонуудыг ерөнхий шийдэд тавиад тооцоход гэж гарна.
  • Үсгэн илэрхийллээр асуудлын шийдийг олоход өгөгдсөн тоонууд дээр ямар үйлдлийг ямар дарааллаар хийх нь маш тодорхой харагдана.
  • Дээрхтэй төстэй асуудлын шийдэлд тухайн биетийн нэр эсхүл ойлголт, бодлогын өгөгдлүүд зэрэг нь тийм ч гол утгыг илэрхийлэхгүй байгааг анзаарвал бодлогыг ерөнхий хэлбэрт шилжүүлэх боломжийг нээдэг зэргээр давуу талуудтай.

Иймээс дээрх бодлогыг дараах байдлаар
Жишээ нь

хоёр биет хоорондоо a нэгж зайтай (нэгжээр метр, километр, өртөө гэх мэтээр) хоёр газраас нэг зэрэг бие биеэ угталцан гарчээ. Эхний биет нэгж хугацаанд (хоног, цаг, минут г.м) b, хоёрдахь биет c нэгж зайг туулна. Тэгвэл тэд хичнээн нэгж хугацааны дараа уулзах вэ? гэж

нэгдсэн хэлбэрт шилжүүлж болно.
Бодлогын шийдэл бол байх нь ойлгомжтой. Энэ бичлэгийг ерөнхий томьёо гэж нэрлэдэг. Томьёо бидэнд дээрхтэй ижил нөхцөлтэй дурын бодлогыг ямар нэгэн үндэслэл гаргалгүйгээр шууд нэг тооцооллоор шийдэх боломжийг олгоно.
Эндээс алгебр тоотой хамааралтай асуудлын ерөнхий шийдийг олон эдгээр асуудлуудыг нэгтгэх зорилготой. Үүний зэрэгцээ алгебр эдгээр ерөнхий шийдлийг хамгийн энгийн ойлгомжтой хэлбэрт оруулах асуудлыг судлахын зэрэгцээ нэг үсгэн илэрхийллийг түүнтэй адил өөр үсгэн хэлбэрт оруулахад сургадаг.
Арифметикаас алгебрт шилжих үед сурагчид нилээд сандардаг. Тоонуудын оронд үсэг орж ирсэн болохоос алгебр бол арифметикийн үргэлжлэл асуудал болон түүний шийдлийг ерөнхийлөлд оруулах л салбар ухаан тул бүр ч илүү сонирхолтой гоё хичээл.
Алгебр тийм хүнд биш гэдгийг дараагийн хичээлүүдээс ойлгон математикт дуртай болно гэдэгт итгэж байна.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4016 Төлбөртэй

Уламжлал.

Ямар нэгэн f(x) функцын цэгүүд дээрх утгуудыг авч үзье. аргументын өөрчлөлт гэх ба аргументын бага хэмжээний өөрчлөлтийг үзүүлнэ. Цэгүүд дээрх функцын утгын ялгаварыг функцын өөрчлөлт гэдэг.
хязгаарыг x0 цэг дээрх f(x) функцын уламжлал гэнэ.
Хэрвээ энэ хязгаар нь утгатай байвал f(x) функцыг x0 цэг дээр дифференциалчлагддаг гэнэ. Функцын уламжлалыг
гэж тэмдэглэдэг.

  Нээгдсэн тоо: 1417 Төлбөртэй

Тригнометрийн ямарч тэгшитгэлийг бодох үндсэн аргачлал бол анхдагч тэгшитгэлийг хувирган торигнометрийн энгийн тэгшитгэлүүдэд шилжүүлээд тэдгээрийн шийдийг олох байдаг. Иймээс тригнометрийн энгийн тэгшитгэлийн шийдийг цээжээр мэдэж байх хэрэгтэй. Энгийн тэгшитгэлийн шийдийг гаргаж буй аргачлалыг сайн ойлголгүй хүчээр цээжлсэнээс болоод тэгшитгэлүүдийн шийдүүдийг холих, тодорхой интервал дахь шийдийг тодорхойлох, орлуулгаас шийдийг олох гээд олон тохиолдолд асуудалд орох талтай.

Жич: Тригнометрийн энгийн тэгшитгэлийн шийдүүд хэрхэн гарч байгааг ойлгохгүйгээр шууд цээжилбэл та цаашид мартан тригнометр гэдэг ухагдхууныг мэддэггүй хүмүүсийн эгнээнд орно. Ихэнх хүмүүс энэ замаар явсан байдаг учраас математикийг хүнд хэцүү хичээл мэтээр ойлгон ярьдаг.

Хичээлээр cosx=a, sinx=a хэлбэрийн энгийн тэгшитгэлийн шийдийг хэрхэн тодорхойлохыг авч үзье.

  Нээгдсэн тоо: 431 Нийтийн

Арифметикт суралцаж буй сурагчид арифметикийн үндсэн дөрвөн үйлдлийн дүрэм болоод үйлдлүүдийг оновчтой хурдан хийх аргыг маш сайн эзэмших хэрэгтэй. Эдгээр дүрэм, аргачлалууд алгебрийн илэрхийллийн хувиргалтуудын суурь болдог гэдгийг санаарай. Дүрмүүд энгийн тул сурагчид болон эцэг эхчүүд нэг их анхаарахгүй өнгөрөөснөөс болоод алгебр орж эхлэхэд суурь дүрмүүдээ мэдэхгүйгээс үүдэн хоцрогдол үүсэх цаашлаад математикийн хичээлд дургүй болох шалтгаан ч болох эрсдэлтэй.

  Нээгдсэн тоо: 8150 Нийтийн

Язгуур доор үл мэдэгдэгчийг агуулсан тэгшитгэлийг иррационал тэгшитгэл гэдэг. Ийм төрлийн тэгшитгэлийг бодохдоо тэгшитгэлд байгаа язгуурууд арифметикийн байх ёстой гэсэн нөхцлийг тооцон үл мэдэгдэгчийн утгын мужийг заавал тооцох хэрэгтэй. Үүнийг тооцоогүйгээс ихэнх алдаанууд гардаг. Хичээлээр иррационал тэгшитгэлийг бодох аргуудын талаар авч үзэх болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 292

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 369

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 339

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 432

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 481

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 505

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 599

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 690

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 726

 
Энэ долоо хоногт

a ба b катеттай тэгш өнцөгт гурвалжин ерөнхий тэгш өнцөгтэй квадратыг багтаасан бол квадратын периметрийг ол.

Нээгдсэн тоо : 1133

 

функцийн графикийн (0,-1) цэгт татсан шүргэгч шулуун ба координатын тэнхлэгүүдээр хашигдсан мужийн талбайг ол.

Нээгдсэн тоо : 749

 

тэнцэтгэл бишийн хамгийн их бүхэл шийдийг ол.

Нээгдсэн тоо : 820