Алгебр арифметикийн ялгаа

Алгебр (арифметикийн адилаар) тоотой холбоотой төрөл бүрийн асуудлын шийдийг олох шинжлэх ухаан. Арифметик, алгебрын хоорондоо нилээд ялгаатай. Алгебр тоотой биш тоог төлөөлөх үсгүүдтэй голлон ажилладаг бол арифметикт тодорхой тоонууд дээр тухайн асуудлын шийдлийг олоход чиглэдэг. Эндээс эдгээр хоёр салбар ухааны гол ялгаа гэвэл алгебр асуудлын ерөнхий шийдлийг харин арифметик асуудлын тухайн тохиолдлын шийдлийг судалдагт оршино.

Алгебр арифметикийн ялгааг илүү ойлгомжтой тайлбарлахын тулд дараах бодлогыг аваад үзье.

Хоёр аялагч бие биеэ угталцан хоорондоо 240 км зайтай хоёр хотоос нэгэн зэрэг гарчээ. Эхнийх нь өдөрт 25 км харин хоёрдахь нь 35 км явдаг бол тэд хэд хоногийн дараа уулзах вэ?

Арифметик аргаар дээрх бодлогыг бодъё.

  • Аялагчдын өдөрт туулах замыг өгсөн болохоор тэд өдөрт нийлээд 25+35=60 км замыг туулна.
  • Тэгвэл тэднийг тусгаарлаж буй 240 км замыг тэд 240:60=4 хоногт туулан уулзана гээд шийдийг олно.

Тэгвэл дээрх бодлогыг 240, 25, 35 гэсэн гурван тооны хувьд биш илүү ерөнхий байдлаар шийдэх гээд үзье. Өөрөөр хэлбэл бодлогын өгүүлбэр дэх 240, 25, 35 тоонуудыг a, b, c үсгээр сольё. Өөрөөр хэлбэл a - хоёр хотын хоорондын зай харин b  - эхний аялагчийн c - хоёрдахь аялагчийн өдөрт туулах зай гэсэн үг.
Ийм ерөнхий тохиолдолд алгебрийн аргачлал орж ирэх ч бодолтын алгоритм өөрчлөгдөхгүй.

  • Аялагчдын өдөрт туулах нийт зам b+c байна.
  • Аялагчид өдөрт нийлээд b+c зайг туулдаг бол тэд нийт a зайг гээд бодлогын шийдийг олно.

Сүүлийн шийд бол дээрх төрлийн бодлогын ерөнхий шийд юм. Одоо энэ шийдэд a=240, b=25, c=35 тоонуудыг тавивал 4 гэж л гарна.
Үсгэн буюу ерөнхий шийдэл тоон шийдэл буюу тухайн тохиолдлын шийдлээс

  • Ерөнхий шийдэл дээрхтэй төстэй нэг төрлийн бүх бодлогод тохирно. Жишээ нь 240, 25, 35 тоонуудын оронд 360, 20, 40 тоонууд өгөгдсөн бол тоонуудыг ерөнхий шийдэд тавиад тооцоход гэж гарна.
  • Үсгэн илэрхийллээр асуудлын шийдийг олоход өгөгдсөн тоонууд дээр ямар үйлдлийг ямар дарааллаар хийх нь маш тодорхой харагдана.
  • Дээрхтэй төстэй асуудлын шийдэлд тухайн биетийн нэр эсхүл ойлголт, бодлогын өгөгдлүүд зэрэг нь тийм ч гол утгыг илэрхийлэхгүй байгааг анзаарвал бодлогыг ерөнхий хэлбэрт шилжүүлэх боломжийг нээдэг зэргээр давуу талуудтай.

Иймээс дээрх бодлогыг дараах байдлаар
Жишээ нь

хоёр биет хоорондоо a нэгж зайтай (нэгжээр метр, километр, өртөө гэх мэтээр) хоёр газраас нэг зэрэг бие биеэ угталцан гарчээ. Эхний биет нэгж хугацаанд (хоног, цаг, минут г.м) b, хоёрдахь биет c нэгж зайг туулна. Тэгвэл тэд хичнээн нэгж хугацааны дараа уулзах вэ? гэж

нэгдсэн хэлбэрт шилжүүлж болно.
Бодлогын шийдэл бол байх нь ойлгомжтой. Энэ бичлэгийг ерөнхий томьёо гэж нэрлэдэг. Томьёо бидэнд дээрхтэй ижил нөхцөлтэй дурын бодлогыг ямар нэгэн үндэслэл гаргалгүйгээр шууд нэг тооцооллоор шийдэх боломжийг олгоно.
Эндээс алгебр тоотой хамааралтай асуудлын ерөнхий шийдийг олон эдгээр асуудлуудыг нэгтгэх зорилготой. Үүний зэрэгцээ алгебр эдгээр ерөнхий шийдлийг хамгийн энгийн ойлгомжтой хэлбэрт оруулах асуудлыг судлахын зэрэгцээ нэг үсгэн илэрхийллийг түүнтэй адил өөр үсгэн хэлбэрт оруулахад сургадаг.
Арифметикаас алгебрт шилжих үед сурагчид нилээд сандардаг. Тоонуудын оронд үсэг орж ирсэн болохоос алгебр бол арифметикийн үргэлжлэл асуудал болон түүний шийдлийг ерөнхийлөлд оруулах л салбар ухаан тул бүр ч илүү сонирхолтой гоё хичээл.
Алгебр тийм хүнд биш гэдгийг дараагийн хичээлүүдээс ойлгон математикт дуртай болно гэдэгт итгэж байна.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2827 Төлбөртэй

Хичээлээр бид тригнометрийн тэгшитгэлүүдийн үндсэн төрлүүд тэдгээрийг бодох аргачлалуудын талаар үзнэ. Сэдэв нь элсэлтийн шалгалтанд оролцогчдод хамгийн төвөгтэйд тооцогдох нэгэн. Элсэлтийн ерөнхий шалгалтанд тригнометрийн тэгшитгэл орж ирэх нь гарцаагүй. Сурагчид энэ сэдвийг сайн ойлгоогүйгээс болж ийм төрлийн бодлогоос оноо алдах тохиолдол маш элбэг. Иймээс тригнометрийн тэгшитгэлүүдийг бодож сурах хэрэгтэй. Хичээлд үзэх зарим нэгэн (жишээ нь орлуулах, үржигдхүүнд задлах) аргууд бол математикийн бусад сэдвүүдэд ашигладаг ерөнхий универсал аргууд болно. Бусад нь зөвхөн тригнометрт хэрэглэдэг аргууд байгаа.

  Нээгдсэн тоо: 3879 Төлбөртэй

Тоон тэнхлэг хичээлээр тоон тэнхлэг ухагдхууныг үзсэн. Тэгвэл хавтгайд хоорондоо перпендикуляр OX, OY тоон тэнхлэгийг байгуулбал тэднийг координатийн тэнхлэг гэж нэрлэдэг. Хэвтээ OX тэнхлэгийг абсцисс (x тэнхлэг) харин босоо OY тэнхлэгийг ординат (y тэнхлэг) гэнэ.

  Нээгдсэн тоо: 14160 Бүртгүүлэх

Бид өмнө нь хязгаар гэж юу болох энгийн хязгааруудыг хэрхэн бодох талаар авч үзсэн. Хязгаарыг ойлгох нь хичээлд үзсэн жишээнүүд их энгийн байсан бөгөөд ийм бэлэгүүд практикт ховор тохиолдох тухай дурдсан. Тэгэхлээр энэ хичээлд хязгаарын илүү нарийн төрлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе.

∞/∞ хэлбэрийн тодорхойгүй төрлийн хязгаарыг бодох.

x->∞ байх үед функц нь хүртвэр, хуваардаа олон гишүүнтийг агуулсан хязгааруудыг авч үзье.

Жишээ 1.

хязгаарыг тооцоол.

  Нээгдсэн тоо: 112 Бүртгүүлэх

Үржих үйлдэлд байр сэлгэх, бүлэглэх, гишүүнчлэн үржүүлэх гэсэн дүрмүүд үйлчилдэг. Эдгээрийг эхнээс нь сайн ойлгон цээжлэх хэрэгтэй.  

Байр сэлгэх

Үржигдхүүн болон үржигчийн байрыг солиход үржвэр өөрчлөгдөхгүй нь доорх зураг дээрх однуудын тоог гаргаж буй хоёр аргаас харагдана.

arif05_02_01

Үржих бол ижил бүрдүүлэгчдийн нийлбэрийг олох арифметик үйлдэл тул дээрх зураг дээрх однуудын нийт тоог 3·4 эсхүл 4·3 үржвэрээр олох боломжтой. Үржигдхүүн болон үржигчийн байрыг солих боломжтой тул тэдгээрийг үржигдхүүнүүд гэж ч бас нэрлэдэг.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 65

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 95

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 101

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 124

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 125

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 179

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 119

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 116

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 126

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1168

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1088

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 840