Үржвэрийн шинжүүд

Арифметикийн үйлдлүүдийн шинжүүдийг мэдэхгүй ч хүмүүс тэдгээрийг тооцоонд өргөн ашигладаг. Энэ удаа үржвэрийн шинжүүдийг аьч үзье.

Байр солих шинж.

Үржигдхүүнүүдийн байрыг солиход үржвэр өөрчлөлгдөхгүй. Өөрөөр хэлбэл үржвэрт орж буй гишүүдийн байрыг солиход үржвэрт нөлөөлөхгүй гэсэн үг. Эндээс дурын a, b тоонууд эсхүл илэрхийллийн хувьд a·b=b·a байна.

Жишээ

6·7=7·6 = 42
4·2·3=3·2·4 = 24
a·b·c=c·a·b=b·c·a

Бүлэглэн үржүүлэх

Гурав болон түүнээс дээш үржигдхүүнтэй үржвэрийн дурын бүлэг үржигдхүүнүүдийг тэдгээрийн үржвэрээр солиход үржвэр өөрчлөгдөхгүй. Иймээс дурын a, b, c тоонууд эсхүл илэрхийллийн хувьд a·b·c=(a·b)·c=a·(b·c) тэнцэл үнэн.

Жишээ

3·2·5=3·(2·5)=3·10=30
3·2·5=(3·2)·5=6·5=30

Бүлэглэн үржих шинжийг олон тоонуудыг үржвэрийг хөнгөн хийхэд ашигладаг.
Жишээ нь 25·15·4 үржвэрийг тооцохдоо үржигдхүүнүүдийг үржвэрт орсон дарааллаар (25·15)·4=375·4=1500 гэж үржүүлснээс бүлэглэх шинжийг ашиглан 25·15·4=(25·4)·15=100·15=1500 гэж тооцох нь хамаагүй хялбар. Өөрөөр хэлбэл эхлээд 25·4=100 гэдгийг тооцоод дараа нь 15 -аар үржүүлнэ.

Олон тоонуудын үржвэрийг олохдоо тэдгээрийг дурын байдлаар сэлгэх /байрыг солих/, бүлэглэн нэгтгэж үржиж болно гэдгийг тогтоон аваарай.

Хэсэгчлэн үржүүлэх

Хэсэгчлэн үржүүлэх шинж нийлбэр ба ялгаварын гэсэн хоёр төрөлтэй.

  • Нийлбэрийг тоогоор үржүүлэхдээ нэмэгдхүүн бүрийг тухайн тоогоор үржүүлээд гарсан үржвэрүүдийг нэмнэ. Өөрөөр хэлбэл a, b, c тоонууд эсхүл илэрхийллийн хувьд a·(b+c)=a·b+a·c тэнцэл үнэн.

Жишээ

(a+b+с+d)·k=a·k+b·k+c·k+d·k
(5+2+3+10)·5=5·5+2·5+3·5+10·5

  • Ялгаварыг тоогоор үржүүлэхдээ хасагдагч ба хасагч бүрийг тухайн тоогоор үржүүлээд хасагдагч болон тухайн тооны үржвэрээс хасагч бүрийг тухайн тоогоор үржүүлсэн үржвэрүүдийг хасна. Өөрөөр хэлбэл a, b, c тоонууд эсхүл илэрхийллийн хувьд a·(b-c)=a·b-a·c тэнцэл үнэн.

Жишээ

(a-b-с)·d=a·d-b·d-c·d
(15-3-2)·5=15·5-3·5-2·5

Хэсэгчлэн үржүүлэх шинжээр үржвэрийг нийлбэр, ялгаварт шилжүүлэхийг хаалт нээх ч гэж ярьдаг. Жишээ нь m·(a+b)=m·a+m·b; m·(a-b)=m·a-m·b  
Эсрэгээрээ нийлбэр, ялгаварыг үржвэрт шилжүүлэхийг ерөнхий үржвэрийг хаалтын өмнө гаргах гэж ярьдаг. Жишээ нь m·a+m·b=m·(a+b); m·a-m·b=m·(a-b)

Тэгээр үржих шинж

Ямарч тоог тэгээр үржихэд үржвэр тэг байна. Өөрөөр хэлбэл үржвэр дэх аль нэгэн үржигдхүүн тэг бол үржвэр тэг байна.

Жишээ
a·0=0
0·a·b·c=0

Зөвлөмж:

  • Алгебр сэдвийг эхлэн үзэж байгаа сурагчдад зориулагдсан тул хичээлүүдийг аль болохоор богино зөвхөн нэг сэдвийн хүрээнд боловсруулсан.
  • Хичээлийг үзээд жишээний дагуу өөрсдөө илэрхийлэл зохиогоод шинжүүдийг хэрэглэн үзвэл илүү хурдан тогтоох болно.
  • Нэмэгдхүүн, хасагдагч гэх мэт илэрхийлэлийн гишүүдийн нэрийг маш сайн тогтоон аваарай.
  • Эцэг эхчүүд бага насны хүүхэддээ туслан хамт үзвэл илүү өгөөжтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 17004 Нийтийн

Бид өмнө нь Тооноос квадрат язгуур авах талаар үзсэн бол энэхүү нийтлэлээр тооны машин ашиглахгүйгээр куб язгуур авахыг сурцгаах болно. Энд бид зөвхөн натурал тоонуудын хувьд авч үзнэ.

Дээрх тоонуудын язгуурыг цээжээр гаргана гэвэл та хир их хугацаа зарцуулна гэж бодож байна. Хэрвээ та бидний үзэх аргачлалыг хэдэн удаа сайн давтвал ямарч тооны куб язгуурыг тун бага хугацаанд гаргах болно.

  Нээгдсэн тоо: 42690 Нийтийн

Энэхүү хичээлээр бид квадрат тэгшитгэлтэй холбогдолтой шийдийг олох томьёо, Виетийн терем, квадрат гурван гишүүнтийг үржвэрт задлах талаар авч үзэх болно.
хэлбэрийн тэгшитгэлийг квадрат тэгшитгэл гэдэг. a, b тоонуудыг үл мэдэгдэгчийн коэффициентүүд харин cсул гишүүн гэдэг. a≠0 байх илэрхийллийг квадрат гурван гишүүнт гэнэ.

  Нээгдсэн тоо: 5508 Нийтийн

ax+b=0 хэлбэрийн тэгшитгэтгэлийг нэг үл мэдэгдэгчтэй шугаман тэгшитгэл гэнэ. Энд a , b нь тодорхой тоонууд харин x нь үл мэдэгдэгч болно.
Тэгшитгэлийг бодно гэдэг нь тэгшитгэлийг адитгал болгох x үл мэдэгдэгчийн тоон утгыг олно.

  1. Хэрэв a≠0 бол тэгшитгэлийн шийд нь
  2. Хэрэв a=0 бол хоёр тохиолдол гарна.
    • b=0 бол 0·x+0=0 энд x дурын тоо байж болно.
    • b≠0 бол 0·x+b=0 энд тэгшитгэл шийдгүй.

 

  Нээгдсэн тоо: 4457 Төлбөртэй

[a,b] хэрчимд өгөгдсөн энэ хэрчимдээ өөрийн тэмдгээ хадгалсан f(x) тасралтгүй функцыг авч үзье. /Зур. 8/ [a,b] хэрчим, x=a, x=b шулуун болон функцын графикаар хязгаарлагдсан дүрсийг муруй шугаман трапец гэдэг. Муруй шугаман трапецын талбайг олохдоо дараах теоремыг ашигладаг.
Хэрвээ f нь [a,b] хэрчимд тасралтгүй, сөрөг биш  функц байгаад F нь энэ хэрчимд түүний эх функц нь бол харгалзах муруй шугаман трапецын талбай S нь [a,b] хэрчим дэх эх функцын өөрчлөлттэй тэнцүү.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 149

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 122

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 195

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 138

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 137

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 188

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1139

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 719

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1123