Үржвэрийн шинжүүд

Арифметикийн үйлдлүүдийн шинжүүдийг мэдэхгүй ч хүмүүс тэдгээрийг тооцоонд өргөн ашигладаг. Энэ удаа үржвэрийн шинжүүдийг аьч үзье.

Байр солих шинж.

Үржигдхүүнүүдийн байрыг солиход үржвэр өөрчлөлгдөхгүй. Өөрөөр хэлбэл үржвэрт орж буй гишүүдийн байрыг солиход үржвэрт нөлөөлөхгүй гэсэн үг. Эндээс дурын a, b тоонууд эсхүл илэрхийллийн хувьд a·b=b·a байна.

Жишээ

6·7=7·6 = 42
4·2·3=3·2·4 = 24
a·b·c=c·a·b=b·c·a

Бүлэглэн үржүүлэх

Гурав болон түүнээс дээш үржигдхүүнтэй үржвэрийн дурын бүлэг үржигдхүүнүүдийг тэдгээрийн үржвэрээр солиход үржвэр өөрчлөгдөхгүй. Иймээс дурын a, b, c тоонууд эсхүл илэрхийллийн хувьд a·b·c=(a·b)·c=a·(b·c) тэнцэл үнэн.

Жишээ

3·2·5=3·(2·5)=3·10=30
3·2·5=(3·2)·5=6·5=30

Бүлэглэн үржих шинжийг олон тоонуудыг үржвэрийг хөнгөн хийхэд ашигладаг.
Жишээ нь 25·15·4 үржвэрийг тооцохдоо үржигдхүүнүүдийг үржвэрт орсон дарааллаар (25·15)·4=375·4=1500 гэж үржүүлснээс бүлэглэх шинжийг ашиглан 25·15·4=(25·4)·15=100·15=1500 гэж тооцох нь хамаагүй хялбар. Өөрөөр хэлбэл эхлээд 25·4=100 гэдгийг тооцоод дараа нь 15 -аар үржүүлнэ.

Олон тоонуудын үржвэрийг олохдоо тэдгээрийг дурын байдлаар сэлгэх /байрыг солих/, бүлэглэн нэгтгэж үржиж болно гэдгийг тогтоон аваарай.

Хэсэгчлэн үржүүлэх

Хэсэгчлэн үржүүлэх шинж нийлбэр ба ялгаварын гэсэн хоёр төрөлтэй.

  • Нийлбэрийг тоогоор үржүүлэхдээ нэмэгдхүүн бүрийг тухайн тоогоор үржүүлээд гарсан үржвэрүүдийг нэмнэ. Өөрөөр хэлбэл a, b, c тоонууд эсхүл илэрхийллийн хувьд a·(b+c)=a·b+a·c тэнцэл үнэн.

Жишээ

(a+b+с+d)·k=a·k+b·k+c·k+d·k
(5+2+3+10)·5=5·5+2·5+3·5+10·5

  • Ялгаварыг тоогоор үржүүлэхдээ хасагдагч ба хасагч бүрийг тухайн тоогоор үржүүлээд хасагдагч болон тухайн тооны үржвэрээс хасагч бүрийг тухайн тоогоор үржүүлсэн үржвэрүүдийг хасна. Өөрөөр хэлбэл a, b, c тоонууд эсхүл илэрхийллийн хувьд a·(b-c)=a·b-a·c тэнцэл үнэн.

Жишээ

(a-b-с)·d=a·d-b·d-c·d
(15-3-2)·5=15·5-3·5-2·5

Хэсэгчлэн үржүүлэх шинжээр үржвэрийг нийлбэр, ялгаварт шилжүүлэхийг хаалт нээх ч гэж ярьдаг. Жишээ нь m·(a+b)=m·a+m·b; m·(a-b)=m·a-m·b  
Эсрэгээрээ нийлбэр, ялгаварыг үржвэрт шилжүүлэхийг ерөнхий үржвэрийг хаалтын өмнө гаргах гэж ярьдаг. Жишээ нь m·a+m·b=m·(a+b); m·a-m·b=m·(a-b)

Тэгээр үржих шинж

Ямарч тоог тэгээр үржихэд үржвэр тэг байна. Өөрөөр хэлбэл үржвэр дэх аль нэгэн үржигдхүүн тэг бол үржвэр тэг байна.

Жишээ
a·0=0
0·a·b·c=0

Зөвлөмж:

  • Алгебр сэдвийг эхлэн үзэж байгаа сурагчдад зориулагдсан тул хичээлүүдийг аль болохоор богино зөвхөн нэг сэдвийн хүрээнд боловсруулсан.
  • Хичээлийг үзээд жишээний дагуу өөрсдөө илэрхийлэл зохиогоод шинжүүдийг хэрэглэн үзвэл илүү хурдан тогтоох болно.
  • Нэмэгдхүүн, хасагдагч гэх мэт илэрхийлэлийн гишүүдийн нэрийг маш сайн тогтоон аваарай.
  • Эцэг эхчүүд бага насны хүүхэддээ туслан хамт үзвэл илүү өгөөжтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3497 Нийтийн

Илэрхийллийг үржигдхүүнд задлах 4 дэх аргад квадрат гурван гишүүнтийг задлах ордог тухай бид Бодлого бодож сурах нь I хичээлд дурдсан байгаа. Бид үржүүлэхийн хураангуй томьёог ашиглан үржигдхүүнд задлах хичээлийн эцэст x2-6x+8 илэрхийллийг бүлэглэх аргыг ашиглан үржигдхүүнд задалсан. Ийм төрлийн илэрхийллийг хэрхэн үржигдхүүнд задлах талаар энэ хичээлээр авч үзэх болно.

  Нээгдсэн тоо: 558 Бүртгүүлэх

Адитгал гэдэг бол тэнцүүгийн тэмдгийн хоёр тал адил буюу тэнцүү идэрхийллээр илэрхийлэгдэх тэнцэл. Адитгалууд үсгэн ба тоон гэж хуваагдана.

Адитгал илэрхийлэл

Алгебрийн хоёр илэрхийлэл үсгүүдийн дурын тоон утганд ижил тоон хэмжээстэй байвал тэдгээрийг адитгал буюу тэнцүү гэж нэрлэдэг.

Жишээ нь x(5 + x) ба 5x + x2 илэрхийллүүд адитгал илэрхийллүүд юм. Учир нь илэрхийллүүд x -ийн дурын утганд бие биетэйгээ тэнцүү утгыг өгнө. Иймээс эдгээрийг адитгал буюу адил тэнцүү гэж нэрлэж болно.
Үүнээс гадна өөр хоорондоо тэнцүү тоон илэрхийллүүдийг адитгал гэж нэрлэж болно.
Жишээ нь 20 - 8 ба 10 + 2 илэрхийллүүдийг адитгал гэж болно.

  Нээгдсэн тоо: 1066 Төлбөртэй

Алгебрийн илэрхийлэл гэдэг нь тооны оронд үсэг болон цифр байж болох хэлбэрээр зохиогдсон бичлэг. Өөрөөр хэлбэл үсэг болон тоонууд холилдон орсон бичлэг. Үүний дээр алгебрийн илэрхийлэл арифметикийн үйлдлүүдийн тэмдэгүүд болон хаалтыг агуулж байж болно.
Алгебрт тоог тэмдэглэсэн дурын үсэг, цифрүүдээр дүрслэгдсэн дурын тоог алгебрийн илэрхийлэл гэж үздэг. Томьёонд агуулагдаж буй алгебрийн илэрхийллийн үсгүүдийг өгөгдсөн тоонуудаар орлуулан заагдсан үйлдлүүдийг хийн арифметикийн тодорхой бодлогуудад хэрэглэдэг.

  Нээгдсэн тоо: 1613 Төлбөртэй

Нэг болон хоёр үл мэдэгдэгчтэй тэнцэл биш, тэнцэл бишийн системүүдийг функцын графикаар ойролцоогоор бодож болдог. Нэг үл мэдэгдэгчтэй тэнцэл бишийг бодохдоо бүх гишүүдийг тэнцэл бишийн нэг талд гарган f ( x ) > 0  хэлбэрт оруулаад f ( x ) = 0 функцын графикийг байгуулна. Үүний дараа графикийг ашиглан функцын тэгүүдийг олно. Эдгээр нь X тэнхлэгийг хэд хэдэн хэсэгт хуваасан байх бөгөөд x-ийн аль хэсэгт функцын утга тэнцэл бишийн утгатай давхцаж байгааг тодорхойлно.
Жишээлбэл: функцын тэгүүд нь a,b /Зур. 30/ гэе. Тэгвэл графикаас f ( x ) > 0 байх хэсэг нь x<a ба x>b гэдэг нь тодорхой. Эдгээр хэсгийг тодруулсан байгаа. Энд > тэмдгийн оронд <,  ≤, ≥ тэмдгүүдийн аль нь ч байж болно.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 65

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 95

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 101

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 124

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 125

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 179

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 119

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 116

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 126

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1169

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1088

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 840