Үржвэрийн шинжүүд

Арифметикийн үйлдлүүдийн шинжүүдийг мэдэхгүй ч хүмүүс тэдгээрийг тооцоонд өргөн ашигладаг. Энэ удаа үржвэрийн шинжүүдийг аьч үзье.

Байр солих шинж.

Үржигдхүүнүүдийн байрыг солиход үржвэр өөрчлөлгдөхгүй. Өөрөөр хэлбэл үржвэрт орж буй гишүүдийн байрыг солиход үржвэрт нөлөөлөхгүй гэсэн үг. Эндээс дурын a, b тоонууд эсхүл илэрхийллийн хувьд a·b=b·a байна.

Жишээ

6·7=7·6 = 42
4·2·3=3·2·4 = 24
a·b·c=c·a·b=b·c·a

Бүлэглэн үржүүлэх

Гурав болон түүнээс дээш үржигдхүүнтэй үржвэрийн дурын бүлэг үржигдхүүнүүдийг тэдгээрийн үржвэрээр солиход үржвэр өөрчлөгдөхгүй. Иймээс дурын a, b, c тоонууд эсхүл илэрхийллийн хувьд a·b·c=(a·b)·c=a·(b·c) тэнцэл үнэн.

Жишээ

3·2·5=3·(2·5)=3·10=30
3·2·5=(3·2)·5=6·5=30

Бүлэглэн үржих шинжийг олон тоонуудыг үржвэрийг хөнгөн хийхэд ашигладаг.
Жишээ нь 25·15·4 үржвэрийг тооцохдоо үржигдхүүнүүдийг үржвэрт орсон дарааллаар (25·15)·4=375·4=1500 гэж үржүүлснээс бүлэглэх шинжийг ашиглан 25·15·4=(25·4)·15=100·15=1500 гэж тооцох нь хамаагүй хялбар. Өөрөөр хэлбэл эхлээд 25·4=100 гэдгийг тооцоод дараа нь 15 -аар үржүүлнэ.

Олон тоонуудын үржвэрийг олохдоо тэдгээрийг дурын байдлаар сэлгэх /байрыг солих/, бүлэглэн нэгтгэж үржиж болно гэдгийг тогтоон аваарай.

Хэсэгчлэн үржүүлэх

Хэсэгчлэн үржүүлэх шинж нийлбэр ба ялгаварын гэсэн хоёр төрөлтэй.

  • Нийлбэрийг тоогоор үржүүлэхдээ нэмэгдхүүн бүрийг тухайн тоогоор үржүүлээд гарсан үржвэрүүдийг нэмнэ. Өөрөөр хэлбэл a, b, c тоонууд эсхүл илэрхийллийн хувьд a·(b+c)=a·b+a·c тэнцэл үнэн.

Жишээ

(a+b+с+d)·k=a·k+b·k+c·k+d·k
(5+2+3+10)·5=5·5+2·5+3·5+10·5

  • Ялгаварыг тоогоор үржүүлэхдээ хасагдагч ба хасагч бүрийг тухайн тоогоор үржүүлээд хасагдагч болон тухайн тооны үржвэрээс хасагч бүрийг тухайн тоогоор үржүүлсэн үржвэрүүдийг хасна. Өөрөөр хэлбэл a, b, c тоонууд эсхүл илэрхийллийн хувьд a·(b-c)=a·b-a·c тэнцэл үнэн.

Жишээ

(a-b-с)·d=a·d-b·d-c·d
(15-3-2)·5=15·5-3·5-2·5

Хэсэгчлэн үржүүлэх шинжээр үржвэрийг нийлбэр, ялгаварт шилжүүлэхийг хаалт нээх ч гэж ярьдаг. Жишээ нь m·(a+b)=m·a+m·b; m·(a-b)=m·a-m·b  
Эсрэгээрээ нийлбэр, ялгаварыг үржвэрт шилжүүлэхийг ерөнхий үржвэрийг хаалтын өмнө гаргах гэж ярьдаг. Жишээ нь m·a+m·b=m·(a+b); m·a-m·b=m·(a-b)

Тэгээр үржих шинж

Ямарч тоог тэгээр үржихэд үржвэр тэг байна. Өөрөөр хэлбэл үржвэр дэх аль нэгэн үржигдхүүн тэг бол үржвэр тэг байна.

Жишээ
a·0=0
0·a·b·c=0

Зөвлөмж:

  • Алгебр сэдвийг эхлэн үзэж байгаа сурагчдад зориулагдсан тул хичээлүүдийг аль болохоор богино зөвхөн нэг сэдвийн хүрээнд боловсруулсан.
  • Хичээлийг үзээд жишээний дагуу өөрсдөө илэрхийлэл зохиогоод шинжүүдийг хэрэглэн үзвэл илүү хурдан тогтоох болно.
  • Нэмэгдхүүн, хасагдагч гэх мэт илэрхийлэлийн гишүүдийн нэрийг маш сайн тогтоон аваарай.
  • Эцэг эхчүүд бага насны хүүхэддээ туслан хамт үзвэл илүү өгөөжтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3045 Төлбөртэй

Үндсэн ойлголт. Олонлогийн жишээ

Олонлог ба олонлогийн элемент гэдэг нь үгээр утга гаргасан тодорхойлолт байдаггүй суурь ойлголтуудад хамаарагдана. Иймээс тогтсон ерөнхий шинжтэй юмсын цуглуулгын талаар олонлог ба олонлогийн элемент гэсэн яриа үүснэ. Номын сангийн номууд, зогсоол дээрх автомашинууд, тэнгэрийн одод, дэлхийн ургамал амьтны аймаг гэх мэт нь бүгд олонлогийн жишээ юм.
Төгсгөлөг тоотой элементээс бүтсэн олонлогийг төгсгөлөг гэнэ. Жишээ нь: номын хуудас, сургуулийн сурагчид г.м
Нэг ч элементгүй олонлогийг хоосон гэнэ. Жишээ нь: далавчтай заануудын олонлог, sinx=2 тэгшитгэлийн шийдийн олонлог г.м

  Нээгдсэн тоо: 16176 Нийтийн

Алгебрийн тэгшитгэл гэдэгт хэлбэрээр өгөгдсөн тэгшитгэлийг ойлгоно. Энд an, an-1, ... , a0 - өгөгдсөн тоонууд, x - үл мэдэгдэгч, n - үл мэдэгдэгчийн хамгийн их зэрэг буюу алгебрийн тэгшитгэлийн зэрэг гэж нэрлэнэ. Алгебрийн тэгшитгэлүүдийн төрлүүд болон тэдгээрийг бодох аргуудтай танилцгаая.

1. Шугаман тэгшитгэл

n=1 байхад дээрх бичлэг ax+b=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг шугаман тэгшитгэл гэх бөгөөд дараах аргаар бодно.

  • Хэрвээ a≠0, b бодит тоо байвал x=b/a шийдтэй, Жишээ.  x-3=2-4x x+4x=2+3 5x=5 x=1
  • Хэрвээ a=0, b=0 бол x дурын тоо байна. Жишээ. 2x+3=5x+5-3x-2 2x-5x+3x=5-2-3 0=0 x -дурын тоо
  • Хэрвээ a=0, b≠0 бол тэгшитгэл шийдгүй. Жишээ. 2x+1=5x+5-3x-2 2x-5x+3x=5-2-1 0=2 шийдгүй.

  Нээгдсэн тоо: 5025 Бүртгүүлэх

Энэ хэсэгт бид хавтгай дүрсийн талбайг олоход өргөн хэрэглэдэг томьёонуудыг авч үзнэ.
Квадрат /Зур. 58/ a - тал , d - диагнал.

Тэгш өнцөгт /Зур. 59/ a, b - талууд.

  Нээгдсэн тоо: 4910 Нийтийн

Хэрвээ X хэсэгт байх x болгоны хувьд бол тасралтгүй F(x) функцыг f(x) ийн эх функц гэнэ.

Жишээ
(-∞,+∞) мужид функц нь учраас ын эх функц болно. Мөн түүнчлэн x3+13 ийн уламжлал нь 3x2 тул x3+13 нь болгоны хувьд 3x2 ийн эх функц нь болно. 13 оронд дурын тогтмол авч болох нь ойлгомжтой.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 91

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 136

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 119

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 236

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 277

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 286

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 342

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 330

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 410

 
Энэ долоо хоногт

хязгаарыг бод.

Нээгдсэн тоо : 2410

 

илэрхийллийн утгыг ол.

Нээгдсэн тоо : 2040

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 477