Жигүүрийн гарааны жишээ өргүүд I
[Event "Берлин, 1956."] [White "Эдуардо"] [Black "Лагерстрем"] 1. g4 {Гробийн дайралт. Өөрийн ноёнгийн жигүүрийг сулруулсан сайн оролдлого гэхэд хэцүү.} e5 (1... d5 {ч сайн.} 2. Bg2 c6 (2... Bxg4?! 3. c4 c6 4. cxd5 cxd5 5. Qb3 {хүүний ашигтай.}) 3. h3 (3. g5?! h6!? 4. h4 hxg5 5. hxg5 Rxh1 6. Bxh1 Qd6 7. Nf3 Bg4 {гээд цагаан хамгаалахад хүрнэ.}) 3... e5 4. d4 e4 5. c4 Na6 6. Nc3 Nc7 7. f3 f5 8. cxd5 cxd5 9. Qb3 Bd6 10. Kf1 Ne7 {гээд хар сайн тоглолттой.}) 2. Bg2 h5!? 3. Nf3 hxg4 {хар жигүүрийн хүүгээр төвийн хүүгээ өгсөн ч h шугамыг нээсэн.} 4. Nxe5 d6! {чанарын хаяа төлөвлөсөн.} 5. Nxg4? {хар хүчтэй дайралттай.} (5. Nc4 {илүү ухаалаг.}) 5... Bxg4! 6. Bxb7 Nd7 7. Bxa8 Qxa8 8. f3 Ne5! 9. Kf2 Be7! 10. fxg4? (10. d4 {илүү суурьтай.}) 10... Nxg4+ 11. Kg3 Bh4+! 12. Kxg4 (12. Kh3 Nf2#) 12... Qe4+ 13. Kh3 Be1# {цагаан буусан.}

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 864 Төлбөртэй

Хаалттай гарааны төрөлд багтах бэрсний гамбитийн с4 хүүний хаяаг хар аваагүй тохиолдолд үүсдэг хувилбарыг татагалзсан бэрсний гамбит гэж нарлэдэг. XX зууны эхэнд хар тэнцүүхэн байрлалтай болох ганц зам бол төвийн төлөө хүүгээр тэмцэх гэх онол давамгайлж байснаас энэхүү хамгаалалт хамгийн өргөн дэлгэрсэн гарааны нэг болсон.

[Event "Москва, 1988."] [White "Карпов"] [Black "Юсупов"] 1. c4 e6 2. Nc3 d5 3. d4 Be7 4. Nf3 Nf6 5. cxd5 exd5 6. Bg5 c6 7. Qc2 g6 ({өөр хариулт} 7... Na6) 8. e4!? {зарчмын үргэлжлэл.} (8. e3 Bf5 {цагаанд багыг өгнө.}) 8... Nxe4 {эрсдэлтэй хариулт} ({ихэнхдээ} 8... dxe4 {гэдэг}) 9. Bxe7 Kxe7 {гарцаагүй нүүдэл.} (9... Qxe7? {гэвэл} 10. Nxd5! {гэх нь мэдээж.}) 10. Nxe4 dxe4 11. Qxe4+ Be6 12. Bc4 Qa5+ 13. Kf1! {яг зөв.} (13. Nd2 Nd7 14. O-O-O Rae8 {сул}) 13... Qf5 14. Qe3 Nd7 15. Re1 Rae8 {үндсэн хүндрэлийг давсан мэт санагдах ч энэ нь хуурамч} 16. d5!! {ганган санаа.} (16. Qa3+ Kf6 17. Bd3 Qd5 18. Qxa7 Bg4! {хар айх зүйлгүй.}) 16... cxd5 17. Bb5! a6 18. Qa3+ Kd8 {цорын ганц боломжит нүүдэл.} (18... Kf6 {гэвэл} 19. Bxd7 Bxd7 20. Qc3+ {гээд шууд хожигдоно.}) 19. Qa5+ Ke7 {буцахаас аргагүй.} (19... Kc8 {гэвэл} 20. Rc1+ Kb8 21. Qc7+ Ka8 22. Nd4 {гээд хурдан хожигдолд хүрнэ.}) 20. Qb4+ Kf6 21. Qd4+ Ke7 22. Bd3 Qh5 23. h4! {өрсөлдөгчид амьсгаа өгөхгүй. 24. g4 заналтай.} Kd8 24. Ng5 Rhf8 25. Be2 Qh6 26. Bf3 Re7 27. Qb4! {хатуу базалт. 28. Бxb7 -гийн зэрэгцээ d5 дээр цохилт заналхийлсэн.} Nf6 28. Qd6+ Rd7 29. Qf4 Ng8 {бэрсээ ийм сонин аргаар хамгаалахад хүрсэн.} 30. Bg4! {харын байрлал нурна.} Kc8 31. Bxe6 fxe6 32. Rc1+ Kd8 33. Nxe6+ Ke7 34. Qxf8+ Qxf8 35. Nxf8 Kxf8 36. Rh3 {цааш энгийн} Ne7 37. h5 Kg7 38. h6+ Kf6 39. Rf3+ Ke6 40. Re1+ Kd6 41. Rf6+ Kc7 42. g4 Nc6 43. Re8 {хар буусан. Сэлгээгүй ноёнг довтлох сургамжтай жишээ өрөг.}

  Нээгдсэн тоо: 1213 Төлбөртэй

Нийтлэлээр нэг тоглогч нь d4 хүүний тогтворыг хамгаалсан нөгөө нь энэхүү хүүг урагшлахыг тулгахыг оролдсон тоглогчдын хоорондын тэмцлийг ойлгуулах зорилготой өргүүдийг авч үзье. Давхар хүү, хүүний массын хөдөлгөөн, түүнийг хязгаарлах нь шатрын өрөгт чухал байр суурийг эзэлдэг. Иймээс дараах жишээнүүдийг сайтар судлан бусад материалуудыг үзэн ойлгон эзэмшихийг зөвлөе.

  Нээгдсэн тоо: 4970 Нийтийн

Шатрын өрөг хэн нэгний хожлоор дандаа дуусдаггүй. Өрсөлдөгчдийн хэн ч хожил авч чадалгүй дуусах тохиолдол их байдаг. Үүнийг тэнцэх буюу манайхны дунд өргөн тархсан хэллэгээр "ничья" гэнэ. Тэнцээний хамгийн энгийн жишээ бол хоёр тал бүх шатруудаа идэлцэж дуусаад хөлөг дээр хоёр ноён үлдэх юм. Шатрын дүрмээр ноёнгууд нэг нэгдээ шууд тулж болохгүй учраас хэн нэг нь хожих боломжгүй. Ийм өрөгийг цааш үргэлжлүүлэх нь утгагүй зүйл тул өргийг тэнцээгээр дууссан гэж үздэг. Тэмцээнд оролцож байгаа шатарчид тэнцвэл тэдэнд 0,5 оноо өгдөг.
Дээрх тохиолдолоос гадна аль нэг тал нь хүчний илүү боловч ганц ноёнг маданд оруулах боломжгүй тохиолдолууд байдаг. Үүнд

  Нээгдсэн тоо: 3014 Төлбөртэй

Энэ удаагийн хичээлээр бид ноёны гамбитын Кизерицийн хувилбарын өөр нэгэн тохиолдлыг авч үзэх болно. Ингээд эхний нүүдлүүд бол хамгийн өргөн дэлгэрсэн хувилбар бөгөөд 1. e4 e5 2. f4 exf4 3. Мf3 g5 4. h4 g4 5. Мe5 Мf6 6. Тc4 d5 7. exd5 Тd6 8. d4 O-O 9. Тxf4 Мh5 10. g3 f6 11. Мxg4 Бe8+ гээд бидний үзсэн Ноёны гамбитын Кизерицийн хувилбар 1 хичээлийн байрлал үүснэ. Зургийг хар.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 293

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 370

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 339

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 435

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 484

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 508

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 601

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 694

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 731

 
Энэ долоо хоногт

a ба b катеттай тэгш өнцөгт гурвалжин ерөнхий тэгш өнцөгтэй квадратыг багтаасан бол квадратын периметрийг ол.

Нээгдсэн тоо : 1136

 

функцийн графикийн (0,-1) цэгт татсан шүргэгч шулуун ба координатын тэнхлэгүүдээр хашигдсан мужийн талбайг ол.

Нээгдсэн тоо : 752

 

тэнцэтгэл бишийн хамгийн их бүхэл шийдийг ол.

Нээгдсэн тоо : 822