Нэг үл мэдэгдэгчтэй шугаман тэгшитгэл

ax+b=0 хэлбэрийн тэгшитгэтгэлийг нэг үл мэдэгдэгчтэй шугаман тэгшитгэл гэнэ. Энд a , b нь тодорхой тоонууд харин x нь үл мэдэгдэгч болно.
Тэгшитгэлийг бодно гэдэг нь тэгшитгэлийг адитгал болгох x үл мэдэгдэгчийн тоон утгыг олно.

  1. Хэрэв a≠0 бол тэгшитгэлийн шийд нь
  2. Хэрэв a=0 бол хоёр тохиолдол гарна.
    • b=0 бол 0·x+0=0 энд x дурын тоо байж болно.
    • b≠0 бол 0·x+b=0 энд тэгшитгэл шийдгүй.

 

Жишээ
тэгшитгэлийг бод. Диагналын дагуу илэрхийллүүдийг хооронд нь үржүүлбэл
гарна. Тэгшитгэлийн бүх гишүүдийг тэнцүүгийн тэмдгийн зүүн талд гаргавал 3x+2=0 гэсэн тэгшитгэл гарна. Эндээс x=-2/3.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2645 Төлбөртэй

Координат.

Координат. Хоёр перпендикуляр XX’, YY’  /Зур. 1/ шулуунууд декарт координат гэж нэрлэгддэг координатын системийг үүсгэнэ. XX’, YY’  шулуунуудыг координатын тэхнлэгүүд, тэдгээрийн огтлолцлын цэгийг O координатын эхлэл гэнэ. Координатын тэнхлэг дээр дурын масштаб хэрэглэнэ.

  Нээгдсэн тоо: 142 Бүртгүүлэх

Үржвэр дэх үржигдэгч болон үржигчийн өөрчлөлт үржвэрт хэрхэн нөлөөлөхийг авч үзье.

Үржигдхүүнийг ихэсгэх

Үржигдэгч болон үржигчийн аль нэгийг хэд дахин өсгөвөл үржвэр төчнөөн дахин өснө.

Үржвэрийг

a · b = c

тэнцэл хэлбэрээр илэрхийлбэл дээрх шинжийг

(a · m) · b = c · m эсхүл a · (b · m) = c · m

гэж тодорхойлж болно.

  Нээгдсэн тоо: 2002 Бүртгүүлэх

Арксинус, арккосинус, арктангенс, арккотангенс гэдэг ойлголтоос сурагчид нилээд айдаг. Эдгээр ухагдхууныг сайтар ойлгоогүйн улмаас түүнийг ашиглах, тэдгээртэй холбогдолтой бодлого бодохоос зайлсхийдэг. Өөрөөр хэлбэл айнаа л гэсэн үг. Гэхдээ эдгээр нь ойлгосон хүндээ тригнометрийн тэгшитгэлийг бодоход асар тус болдог энгийн л ойлголтууд гэдгийг та энэ хичээлийн эцэст мэдэн авах болно.
Синус, косинус, тангенс, котангенс талаар мэдэж байхад илүүдэхгүй. Тэдгээрийн зарим өнцгүүдийн утгууд гээд хамгийн ерөнхий зүйлийг мэдэж байхад асуудал үүсэхгүй ойлгоно.

  Нээгдсэн тоо: 3014 Бүртгүүлэх

Тригнометрийн илэрхийллийг хялбарчлах аргууд, тэдгээрт ашиглах томьёонуудын талаарх хичээлээ үргэлжлүүлье. Тригнометрийн илэрхийллийг хялбарчлах арга техникийг сураагүй бол тригнометрийн тэгшитгэл, тэнцэтгэл бишийг бодох тухай яриад ч хэрэггүй. Тригнометр сэдэв нилээд олон тооны их төстэй хэлбэрийн томьёонуудтай байдаг нь тэдгээрийг цээжлэх, ашиглахад хүндрэлтэй байдал үүсгэх талтай.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 133

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 196

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 199

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 220

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 217

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 298

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 227

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 222

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 222

 
Энэ долоо хоногт

бол

  1. байх тул
  2. байна.

Нээгдсэн тоо : 1361

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 1493

 

функц өгөгдөв.

  1. функцийн x0=2 цэгт татсан шүргэгч шулууны тэгшитгэлийг бичвэл
  2. , x=2, x=4 ба y=0 шугамуудаар хүрээлэгдсэн дүрсийн талбай
  3. y=2x+5 шулуунд перпендикуляр ба (1;1) цэгийг дайрсан шулууны тэгшитгэл нь
  4. функц ба x+5y-12=0 шулууны огтлолцлын цэгүүдийн хоорондын зай

Нээгдсэн тоо : 1034