Тоон цувааны хязгаар

Тоон дараалал

Натурал тоон цувааг авч үзье.

1, 2, 3, … ,n-1, n, …

Энэ цувааны тоо бүрийг тодорхой дүрмийн дагуу ямар нэгэн un тоогоор соливол шинэ тоон цуваа үүснэ.
тэмдэглэгээ

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 521 Бүртгүүлэх

Тоонуудын нэмэх үйлдэл ашигладаг аргачлалуудын талаар авч үзье.

Нэг оронтой тоонуудыг нэмэх

Нэг оронтой тоонуудын нийлбэрийг олохдоо

arif03_07_01

нэмэх хүснэгтийг ашиглан хийдэг. Дээрх хүснэгтийг 1 -ээс 9 хүртэлх дурын хоёр тооны нийлбэр болон хасагдагч нь 18 тай тэнцүү буюу бага хасагч нь 1 -ээс 9 хүртэлх тоонуудын ялгаварыг олоход ашиглана.

  Нээгдсэн тоо: 7350 Бүртгүүлэх

Хэрвээ f(x) функцын уламжлал нь x0 цэгт дифференциалчлагдаж байвал түүнийг f(x) функцын x0 цэг дээрх хоёрдугаар эрэмбийн уламжлал / гэж тэмдэглэнэ./ гэнэ.

  1. Хэрвээ функцын график нь дурын цэгт y=f(x) функцын графикийн муруйд татсан шүргэгчийн доор байрлаж байвал f(x) функцыг (a,b) интервалд гүдгэр гэнэ.
  2. Хэрвээ функцын график нь дурын цэгт y=f(x) функцын графикийн муруйд татсан шүргэгчийн дээр байрлаж байвал f(x) функцыг (a,b) интервалд хотгор гэнэ.

  Нээгдсэн тоо: 6693 Нийтийн

Тоо гэдэг ухагдхууныг хүмүүс маш эртнээс бий болгон ашиглан ирсэн. Эхлээд натурал тооны олонлог бий болон араас нь бутархай, эерэг иррационал тоонууд бий болсон. Орчин үеийн математикт тоонуудыг олон дэд олонлогт задлан үзэх болсон. Сурагчид эдгээр тоон олонлогуудын талаарх мэдлэг дутуугаас зарим нэгэн тэмдэглэгээг ч мэдэхгүй байх нь элбэг. Тоонуудын олонлогийн талаар сайн ойлгон тухайн олонлогт ямар тоонууд ордогийг мэдэж байх хэрэгтэй. Олонлогт багтах тоонуудыг сурагчид бараг бүгд мэддэг хирнээ ямар олонлог, хэрхэн тэмдэглэдэг, ямар шинжүүдтэй зэргийг мэддэггүй. Үүнээс болоод зарим бодлогын нөхцлийг буруу ойлгох, шийдийн олонлогийг буруу бичих зэрэг алдаануудыг гаргадаг. Иймээс тоон олонлогуудыг талаар мэдлэгтэй болцгооё.

  Нээгдсэн тоо: 18952 Нийтийн

Нэг хавтгай дээр орших хоорондоо огтлолцодгүй /Зур. 11/ AB ба CD шулуунуудыг паралель шулуун гэдэг бөгөөд AB || CD гэж тэмдэглэнэ. Паралель шугамын нэг дээр байрлах цэг нөгөө шугаман дээр байрлах цэгээс ижил зайд байна. Паралель шугамын хоорондох өнцөгийг тэг гэж үздэг. Нэг чигт чиглэсэн хоёр паралель цацрагийн хоорондох өнцөг тэгтэй , эсрэг чиглэлтэй тохиолдолд тэнцүү. KM шулуунтай перпендикуляр AB, CD, EF /Зур. 12/  шулуунууд нь өөр хоорондоо паралель байна. Паралель хоёр шулуунтай перпендикуляр шулууны урт нь паралель шулуунуудын хоорондын зай болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 250

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 336

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 301

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 400

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 446

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 472

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 556

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 627

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 665

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1409

 

тэгшитгэл бод.

Нээгдсэн тоо : 1014

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1059