Тоон цувааны хязгаар

Тоон дараалал

Натурал тоон цувааг авч үзье.

1, 2, 3, … ,n-1, n, …

Энэ цувааны тоо бүрийг тодорхой дүрмийн дагуу ямар нэгэн un тоогоор соливол шинэ тоон цуваа үүснэ.
тэмдэглэгээ

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4067 Нийтийн

Хавгайн геометрт ихэнхдээ ашиглагддаг аксиомуудыг авч үзье

  1. Харьяаллын аксиом. Хавтгай дээрх дурын хоёр цэгийг дайруулж цорын ганц  шулуун татна.
  2. Дарааллын аксиом. Шулуун дээрх гурван цэгээс хоёр цэгийнхээ дунд орших нэг цэг олдоно.
  3. Хэрчим өнцөгийн тэнцлийн аксиом. Хэрвээ хоёр өнцөг юмуу хэрчим гуравдагч өнцөг юмуу хэрчимтэй тэнцүү бол тэдгээр нь өөр хоорондоо тэнцүү байна.
  4. Паралель шулууны аксиом. Шулууны гадна орших дурын нэг цэгийг дайруулан уг шулуунтай паралель цорын ганц шулуун татаж болно.
  5. Үргэлжлэлийн аксиом. / Архимедын аксиом /  AB ба CD дурын хоёр хэрчмийн хувьд гэсэн төгсгөлөг цэгийн багц байна. Тэгвэл AB хэрчим дээр байгаа хэрчмүүд нь CD дээрх хэрчмүүдтэй тэнцүү бөгөөд A ба хооронд B цэг оршино.

  Нээгдсэн тоо: 2503 Бүртгүүлэх

Ямар нэгэн муруй хавтгай дээр /Зур. 94/ A, B, C гэсэн гурван цэг байна гэж үзээд эдгээр цэгүүдийг дайруулан P огтлогч хавтгайг татъя. B, C цэгүүдийг A цэг рүү хоёр өөр чиглэлээр хөдөлгөе. Тэгвэл P хавтгай нь B, C цэгийг хаана авсан, A цэг рүү явж байгаа замаас хамаарахгүйгээр ямар нэгэн Q хязгаарын байрлал руу тэмүүлэх болно. Q хавтгайг A цэг дэх шүргэгч хавтгай гэнэ.
Гадаргуун зарим цэгүүд шүргэгч хавтгайгүй байж болно. Жишээ нь: Конусын оройд шүргэгч хавтгай байхгүй.

Бөөрөнхий гадаргуун шүргэгч P хавтгай нь /Зур. 95/ шүргэлтийн цэг A -д татсан OA радиустай перпендикуляр байна. Бөөрөнхий гадаргуу ба шүргэгч хавтгай нь шүргэлтийн цэг гэсэн ганцхан ерөнхий цэгтэй байдаг.

  Нээгдсэн тоо: 403 Нийтийн

Нийлбэр дэх бүрдүүлэгчдийг нэгтгэн нэмэх дүрэм -ийг үндэслэн дараах хоёр дүрэм гарч ирдэгийг хичээл үзье.

Нийлбэрийн дүрэм, шинжүүдийг маш сайн ойлгон, ашиглаж сурах нь цаашид илэрхийллийн хувиргалт, хялбарчлалд их хэрэгтэй.



  Нээгдсэн тоо: 477 Бүртгүүлэх

Тоонуудын нэмэх үйлдэлд өргөнөөр ашигладаг дүрэм буюу хууль байдаг. Эдгээр нь тоонуудын нийлбэрийг хялбараар хурдан тооцоход их тустай. Нэмэх үйлдэлд байр сэлгэх, нэгтгэн /бүлэглэн/ нэмэх гэсэн хоёр дүрэм бий.

Байр сэлгэн нэмэх дүрэм

Нийлбэрт оролцож буй тоонуудын байрыг солиход нийлбэр өөрчлөгдөхгүй. 

Үүнийг доорх зураг дээрх

arif03_01_01

таван хошуунуудын нийт тоог тооцон амархан шалгах боломжтой.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 161

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 235

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 200

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 315

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 345

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 351

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 431

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 441

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 507

 
Энэ долоо хоногт

функцийн уламжлалыг тооц.

Нээгдсэн тоо : 516

 

утгыг ол.

Нээгдсэн тоо : 308

 

prob04_103_01 ба prob04_103_02 векторууд перпендикуляр бол y -ийн утгыг ол.

Нээгдсэн тоо : 171