Гурвалжны орто төв

Гурвалжны гайхамшигт цэгүүдээс сурагчдын хамгийн бага мэдээлэлтэй байдаг нь орто төв, орто гурвалжин байдаг. Гэтэл элсэлтийн шалгалт дээр ийм төрлийн бодлогууд ирэх тохиолдол байна. Иймээс энэ хичээлээр гурвалжны орто төв гэж юуг хэлэх түүнийг бодлогод хэрхэн ашиглахыг элсэлтийн ерөнхий шалгалтанд ирж байсан бодлогууд дээр тайлбарлах болно.

Ямарч гурвалжны хувьд түүний өндрүүд эсхүл тэдгээрийн үргэлжлэл нь нэг цэгт огтлолцдог. Энэ цэгийг орто төв гэж нэрлэдэг. Орто төвийн байрлал гурвалжны төрлөөс хамаардаг.

  • Хурц өнцөгт гурвалжны орто төв гурвалжин дотроо байрлана.
  • Мохоо өнцөгт гурвалжинд орто төв гурвалжны гадна байршина.
  • Тэгш өнцөгт гурвалжинд орто төв нь тэгш өнцгийн орой дээр байрладаг.

Орто төвийг ихэвхичлэн H үсгээр тэмдэглэх бөгөөд дараах шинжүүдтэй

  • Гурвалжны гурван орой (A,B,C) болон орто төв H дөрвөн цэгийн аль нь ч бусад гурван цэгээр байгуулсан гурвалжны орто төв нь болдог. Заримдаа ийм дөрвөн цэгийг орто төвийн систем ч гэж нэрлэдэг.
  • Орто төвийн системийн дурын 3 цэгийг дайран өнгөрөх тойргуудын радиусууд тэнцүү
  • ABC гурвалжны өндрүүдийн тал дээр буусан цэгүүдээр үүсэх гурвалжинг (FGE) орто гурвалжин гэнэ.
  • Хурц өнцөгт ABC гурвалжны орто төв H нь FGE орто гурвалжинд багтсан тойргийн төв болдог.
  • OABC гурвалжинг багтаасан тойргийн төв гэвэл тэнцэл биелэнэ.
  • Энд R- ABC гурвалжинг багтаасан тойргийн радиус, a,b,c - гурвалжны талууд
  • Гурвалжны дурын оройгоос түүний орто төв хүртлэх зай нь оройн эсрэг талаас гурвалжинг багтаасан тойргийн төв хүртэлх зайнаас хоёр дахин их байдаг.

Сүүлийн харьцаа маш чухал харьцаа тул тогтоож аваарай. Үүнийг баталъя.

тэнцлийн баталгааг үзүүлж байгаа нь 1-рт харьцаа нь их чухал 2-рт баталгааг хийж сурдаггүй юм гэхэд баталгаанд ашиглаж байгаа ухагдхуун нь геометрийн баталгаа шаардахгүй суурь ойлголтууд байдаг тул эдгээрийг ойлгон тогтоон авахад их хэрэгтэй. Бодлого бодохдоо бид теорем, лемм, суурь ойлголтуудаар л үндсэн гаргалгааг хийх болдог. Баталгааг хийж чадахгүй гээд орхиж болохгүй. Сайн уншаад ойлгохыг хичээ. Тогтоож авах нь гол биш хэрхэн гаргалгаа хийж байгааг сурахыг хичээгээрэй.
CO шулуун багтаасан тойргийг Q цэгт огтлоно гэж үзье. зургийг хар. CQ нь диаметр тул QAP өнцөг 90 буюу тэгш өнцөг. Харин байна. AOC гурвалжин адил хажуут OP нь түүний өндөр тул |AP|=|PC| болох тул OP нь CQA гурвалжны дундаж шугам болох нь. гэдгээс (яагаад гэдгийг өөрсдөө батлаарай) QB||AH байна. Нөгөө талаас учраас AQ||BH болж таарна. Эндээс AQBH нь паралелграмм гэдэг нь батлагдах бөгөөд өөрөөр хэлбэл AQ=BH гэсэн үг. Ингээд болсноор харьцаа батлагдлаа.

Одоо орто төвтэй холбогдолтой бодлогын жишээ авч үзье.

Бодлого 9.026       ЕШ 2013 А-21
ABC гурвалжны A ба C оройн өндрүүд H цэгт огтлолцоно. Хэрэв ABC гурвалжныг багтаасан тойргийн радиус 4 нэгж ба бол |BH|=?

Бодолтыг үзэх

Бодлого 9.036      ЕШ 2008 A-12
ABC гурвалжны хувьд ба орто төв нь H бол AH хэрчмийн уртыг ол.

Бодолтыг үзэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1402 Нийтийн

Ямар нэгэн зүйл /обьект/ эсхүл хийгдэж буй үйлдлийн тоог мэдэхийн тулд тэдгээрийг тоолох хэрэгтэй. Тоолол гэдэг нь ямар нэгэн тоон үзүүлэлтийг тооцох үйлдэл эсхүл тооллогоор илэрхийлэгдэнэ. Тоололд орж буй тусдаа обьект бүр эсхүл тусдаа үйлдэл бүрийг нэгж гэнэ. Нэгж гэдэг нь тусдаа обьектын хийсвэрлэлийг илэрхийлэх тоо юм. Тоололын үр дүн буюу тоологдсон нэгжийн нийлбэрийг тоо гэж нэрлэнэ.

  Нээгдсэн тоо: 3083 Бүртгүүлэх

Тригнометрийн илэрхийллийг хялбарчлах аргууд, тэдгээрт ашиглах томьёонуудын талаарх хичээлээ үргэлжлүүлье. Тригнометрийн илэрхийллийг хялбарчлах арга техникийг сураагүй бол тригнометрийн тэгшитгэл, тэнцэтгэл бишийг бодох тухай яриад ч хэрэггүй. Тригнометр сэдэв нилээд олон тооны их төстэй хэлбэрийн томьёонуудтай байдаг нь тэдгээрийг цээжлэх, ашиглахад хүндрэлтэй байдал үүсгэх талтай.

  Нээгдсэн тоо: 2305 Бүртгүүлэх

Олон өнцөгтүүд дотоод ба гадаад өнцгүүдтэй. Олон өнцөгтийн залгаа орших хоёр талын үүсгэх өнцгийг олон өнцөгтийн дотоод өнцөг гэнэ.

Жишээ нь зурагт үзүүлсэн ABC өнцөг бол ABCDEF олон өнцөгтийн дотоод өнцөг.

  Нээгдсэн тоо: 16467 Бүртгүүлэх

Хоёр талаар нь бодох.

Тэгш өнцөгт гурвалжны хоёр тал нь өгөгдсөн тохиолдолд гуравдахь талыг Пифагорын томьёогоор тооцож олно. Хурц өнцгийг ямар хоёр тал нь өгөгдсөнөөс хамаарч тохирох тригнометрийн функцийг хэрэглэнэ. Жишээ нь a, b катетууд өгөгдсөн бол A өнцгийг олох юм.

Жишээ 1
Тэгш өнцөгт гурвалжны катет a=0.324, гипотенуз c=0.544 бол b катет ба A, B өнцгийг ол.

Бодолт
Катет нь Өнцөг нь буюу болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 80

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 129

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 115

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 226

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 269

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 275

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 329

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 317

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 401

 
Энэ долоо хоногт

X санамсаргүй хувьсагчийн магадлалын тархалт дараах хүснэгтээр өгөгджээ. Математик дундаж нь хэд вэ?

X 2 5 3 1
P 0,4 0,2 0,3 0,1

Нээгдсэн тоо : 441

 

тоонуудаас аль нь рационал тоонууд вэ?

A. a,b,e   B. a,d,e   C. b,c,e   D. b,c,d   E. a,c,d

Нээгдсэн тоо : 623

 

1,(3) аравтын үелэх бутархайг энгийн бутархай болго.

Нээгдсэн тоо : 903