Гурвалжны орто төв

Гурвалжны гайхамшигт цэгүүдээс сурагчдын хамгийн бага мэдээлэлтэй байдаг нь орто төв, орто гурвалжин байдаг. Гэтэл элсэлтийн шалгалт дээр ийм төрлийн бодлогууд ирэх тохиолдол байна. Иймээс энэ хичээлээр гурвалжны орто төв гэж юуг хэлэх түүнийг бодлогод хэрхэн ашиглахыг элсэлтийн ерөнхий шалгалтанд ирж байсан бодлогууд дээр тайлбарлах болно.

Ямарч гурвалжны хувьд түүний өндрүүд эсхүл тэдгээрийн үргэлжлэл нь нэг цэгт огтлолцдог. Энэ цэгийг орто төв гэж нэрлэдэг. Орто төвийн байрлал гурвалжны төрлөөс хамаардаг.

  • Хурц өнцөгт гурвалжны орто төв гурвалжин дотроо байрлана.
  • Мохоо өнцөгт гурвалжинд орто төв гурвалжны гадна байршина.
  • Тэгш өнцөгт гурвалжинд орто төв нь тэгш өнцгийн орой дээр байрладаг.

Орто төвийг ихэвхичлэн H үсгээр тэмдэглэх бөгөөд дараах шинжүүдтэй

  • Гурвалжны гурван орой (A,B,C) болон орто төв H дөрвөн цэгийн аль нь ч бусад гурван цэгээр байгуулсан гурвалжны орто төв нь болдог. Заримдаа ийм дөрвөн цэгийг орто төвийн систем ч гэж нэрлэдэг.
  • Орто төвийн системийн дурын 3 цэгийг дайран өнгөрөх тойргуудын радиусууд тэнцүү
  • ABC гурвалжны өндрүүдийн тал дээр буусан цэгүүдээр үүсэх гурвалжинг (FGE) орто гурвалжин гэнэ.
  • Хурц өнцөгт ABC гурвалжны орто төв H нь FGE орто гурвалжинд багтсан тойргийн төв болдог.
  • OABC гурвалжинг багтаасан тойргийн төв гэвэл тэнцэл биелэнэ.
  • Энд R- ABC гурвалжинг багтаасан тойргийн радиус, a,b,c - гурвалжны талууд
  • Гурвалжны дурын оройгоос түүний орто төв хүртлэх зай нь оройн эсрэг талаас гурвалжинг багтаасан тойргийн төв хүртэлх зайнаас хоёр дахин их байдаг.

Сүүлийн харьцаа маш чухал харьцаа тул тогтоож аваарай. Үүнийг баталъя.

тэнцлийн баталгааг үзүүлж байгаа нь 1-рт харьцаа нь их чухал 2-рт баталгааг хийж сурдаггүй юм гэхэд баталгаанд ашиглаж байгаа ухагдхуун нь геометрийн баталгаа шаардахгүй суурь ойлголтууд байдаг тул эдгээрийг ойлгон тогтоон авахад их хэрэгтэй. Бодлого бодохдоо бид теорем, лемм, суурь ойлголтуудаар л үндсэн гаргалгааг хийх болдог. Баталгааг хийж чадахгүй гээд орхиж болохгүй. Сайн уншаад ойлгохыг хичээ. Тогтоож авах нь гол биш хэрхэн гаргалгаа хийж байгааг сурахыг хичээгээрэй.
CO шулуун багтаасан тойргийг Q цэгт огтлоно гэж үзье. зургийг хар. CQ нь диаметр тул QAP өнцөг 90 буюу тэгш өнцөг. Харин байна. AOC гурвалжин адил хажуут OP нь түүний өндөр тул |AP|=|PC| болох тул OP нь CQA гурвалжны дундаж шугам болох нь. гэдгээс (яагаад гэдгийг өөрсдөө батлаарай) QB||AH байна. Нөгөө талаас учраас AQ||BH болж таарна. Эндээс AQBH нь паралелграмм гэдэг нь батлагдах бөгөөд өөрөөр хэлбэл AQ=BH гэсэн үг. Ингээд болсноор харьцаа батлагдлаа.

Одоо орто төвтэй холбогдолтой бодлогын жишээ авч үзье.

Бодлого 9.026       ЕШ 2013 А-21
ABC гурвалжны A ба C оройн өндрүүд H цэгт огтлолцоно. Хэрэв ABC гурвалжныг багтаасан тойргийн радиус 4 нэгж ба бол |BH|=?

Бодолтыг үзэх

Бодлого 9.036      ЕШ 2008 A-12
ABC гурвалжны хувьд ба орто төв нь H бол AH хэрчмийн уртыг ол.

Бодолтыг үзэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3157 Төлбөртэй

Үндсэн ойлголт. Олонлогийн жишээ

Олонлог ба олонлогийн элемент гэдэг нь үгээр утга гаргасан тодорхойлолт байдаггүй суурь ойлголтуудад хамаарагдана. Иймээс тогтсон ерөнхий шинжтэй юмсын цуглуулгын талаар олонлог ба олонлогийн элемент гэсэн яриа үүснэ. Номын сангийн номууд, зогсоол дээрх автомашинууд, тэнгэрийн одод, дэлхийн ургамал амьтны аймаг гэх мэт нь бүгд олонлогийн жишээ юм.
Төгсгөлөг тоотой элементээс бүтсэн олонлогийг төгсгөлөг гэнэ. Жишээ нь: номын хуудас, сургуулийн сурагчид г.м
Нэг ч элементгүй олонлогийг хоосон гэнэ. Жишээ нь: далавчтай заануудын олонлог, sinx=2 тэгшитгэлийн шийдийн олонлог г.м

  Нээгдсэн тоо: 2656 Бүртгүүлэх

Олон функцыг /яв цав эсвэл ойролцоогоор / энгийн томьёогоор илэрхийлж болдог. Жишээлбэл, дугуйн талбай S, түүний радиусын r хоорондын хамаарал нь томьёогоор илэрхийлэгдэнэ; Хоёр хувьсагчийн функционал хамаарал хэсэгт авч үзсэн дээш шидэгдсэн биеийн хүрэх өндөр h, нийт хугацаа T  хоёрын хамаарал гэх мэт. Агаарын эсэргүүцэл, дэлхийн таталтын хүч өндрөөс хамаардаг зэргийг тооцоогүй учраас энэ нь ойролцоо томьёо юм. Функционал хамааралыг томьёогоор илэрхийлэх боломжгүй эсвэл томьёо нь тооцоо хийхэд тохиромж муутай байх тохиолдол бас байдаг. Ийм үед функцыг хүснэгт эсвэл графикаар үзүүлдэг.
Жишээ нь Усны буцлах температур T, агаарын даралт p хоёрын  функционал хамааралыг нэг томьёогоор илэрхийлж болохгүй боловч хүснэгтээр үзүүлж болно.

  Нээгдсэн тоо: 2643 Бүртгүүлэх

Хувьсах хэмжигдхүүн нь туршилтын үр дүнд тодорхой магадлалтайгаар бодит утга авч байвал түүнийг санамсаргүй гэж нэрлэнэ. Хэрвээ сөрөг биш X хувьсагчийг pi магадлалтайгаар xi утгыг авах харгалзааг тодорхойлох

функц байвал X санамсаргүй хэмжигдхүүнийг дискрет гэдэг.

  Нээгдсэн тоо: 19915 Нийтийн

Нэгийн хэсэг эсвэл түүний хэд хэдэн хэсгийг энгийн бутархай гэдэг. Нэгийг ижилхэн хэсэгт хувааж байгаа тоог хуваар гэнэ. Хуваагдсан хэсгүүдээс авсан тоог хүртвэр гэнэ. Бутархайг дараах байдлаар бичнэ.

Хэрвээ хүртвэр нь хуваариасаа бага байвал бутархай 1 ээс бага бөгөөд бутархайг зөв бутархай гэдэг. Хэрвээ хүртвэр хуваартайгаа тэнцүү бол бутархай 1 тэй тэнцүү харин хүртвэр нь хуваариасаа их бол бутархай 1 ээс их байна. Ийм бутархайг засагдах бутархай гэдэг. Хүртвэр нь хуваарьтай үлдэгдэлгүй хуваагдаж байвал энэ бутархай ноогдвортой нь тэнцүү байна. 63/7=9.
Үлдэгдэлтэй хуваагдаж байвал засагдах бутархайг холимог тоогоор илэрхийлнэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 247

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 334

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 299

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 396

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 442

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 468

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 552

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 624

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 659

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1407

 

тэгшитгэл бод.

Нээгдсэн тоо : 1014

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1058