Тригнометрийн бодолтын жишээ

Энэ нийтлэлээр бодит шалгалт дээр ирж байсан тригнометрийн хоёр бодлогын бодолтыг дэлгэрэнгүйгээр тайлбарлах болно. Эдгээр бодлогын бодолтыг сайн судлаад ойлговол тригнометрийн бодлогыг ойлгоход сайн суурь болж чадна. Бодлогын шийдүүдээс өгөгдсөн завсар дахь утгуудыг сонгох нэмэлт нөхцөл оруулсан нь сурагчдаас тригнометрийн илүү нарийн ойлголтыг шаардах юм. Сурагчид бодлогыг хураангуйлан энгийн хэлбэрт оруулж чаддаг ч шийдийг гаргах тэр тусмаа өгөгдсөн завсарт харьяалагдах шийдийг сонгохдоо үндсэн хүндрэлтэй тулдаг. Иймд бодолтуудыг анхааралтай судлаад ойлгон авахыг хичээгээрэй. Олон бодлого бодохдоо биш аргачлалыг ойлгох нь чухал.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 14550 Бүртгүүлэх

Бид өмнө нь хязгаар гэж юу болох энгийн хязгааруудыг хэрхэн бодох талаар авч үзсэн. Хязгаарыг ойлгох нь хичээлд үзсэн жишээнүүд их энгийн байсан бөгөөд ийм бэлэгүүд практикт ховор тохиолдох тухай дурдсан. Тэгэхлээр энэ хичээлд хязгаарын илүү нарийн төрлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе.

∞/∞ хэлбэрийн тодорхойгүй төрлийн хязгаарыг бодох.

x->∞ байх үед функц нь хүртвэр, хуваардаа олон гишүүнтийг агуулсан хязгааруудыг авч үзье.

Жишээ 1.

хязгаарыг тооцоол.

  Нээгдсэн тоо: 42531 Нийтийн

Тэмдэглэгээ:

V - эзэлхүүн ; S - суурийн талбай ; - хажуу гадаргуун талбай; P - бүтэн гадаргуу; h - өндөр; a, b, c - тэгш өнцөгт паралелпепидын хэмжээсүүд; A - зөв ба зөв зүсэгдсэн пирамидийн апофем; L - конусын бүрдүүлэгч; p - периметр эсвэл суурийн тойргийн урт; r - суурийн радиус; d - суурийн диаметр; R - шаарын радиус; D - шаарын диаметр;  1 ба 2 индексүүд нь зүсэгдсэн призм ба пирамидийн радиус, диаметр, периметр, дээд доод сууриудтай холбоотой.

  Нээгдсэн тоо: 3886 Төлбөртэй

Уламжлал.

Ямар нэгэн f(x) функцын цэгүүд дээрх утгуудыг авч үзье. аргументын өөрчлөлт гэх ба аргументын бага хэмжээний өөрчлөлтийг үзүүлнэ. Цэгүүд дээрх функцын утгын ялгаварыг функцын өөрчлөлт гэдэг.
хязгаарыг x0 цэг дээрх f(x) функцын уламжлал гэнэ.
Хэрвээ энэ хязгаар нь утгатай байвал f(x) функцыг x0 цэг дээр дифференциалчлагддаг гэнэ. Функцын уламжлалыг
гэж тэмдэглэдэг.

  Нээгдсэн тоо: 28167 Нийтийн

Хаалттай тахир шугаман дүрсүүд периметр, талбайтай байдаг. Гурвалжин ч хаалттай тахир шугамаар үүсдэг дүрс тул хичээлээр гурвалжны периметр, талбайн талаар авч үзье.

Жич: Геометрийн бодлогод периметр, талбайг ол гэсэн нөхцөл байхаас тухайн ухагдхуун гэж юу болох хэрхэн тооцохыг та өөрөө мэдэж байхыг шаардана. Ухагдхууныг мэдэхгүй, яаж тооцохыг мэдэхгүй бол бодлогыг бодохгүй л гэсэн үг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 145

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 208

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 176

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 296

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 325

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 333

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 404

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 405

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 481

 
Энэ долоо хоногт

Тэгш өнцөгт параллелепипедын диагнал түүний 3 ба 4 хэмжээтэй талстад 60 градусын өнцгөөр налсан бол диагоналын урт хэд вэ?

Нээгдсэн тоо : 1279

 

Суурийн радиус нь 4 см байх шулуун дугуй цилиндрийн нэг үзүүрээс зурагт үзүүлснээр хавтгайгаар огтлоход хамгийн урт байгуулагч нь 15 см, хамгийн богино байгуулагч нь 9 см болсон бол үүссэн биетийн эзэлхүүнийг ол.

Нээгдсэн тоо : 2925

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 203