Тригнометрийн бодолтын жишээ

Энэ нийтлэлээр бодит шалгалт дээр ирж байсан тригнометрийн хоёр бодлогын бодолтыг дэлгэрэнгүйгээр тайлбарлах болно. Эдгээр бодлогын бодолтыг сайн судлаад ойлговол тригнометрийн бодлогыг ойлгоход сайн суурь болж чадна. Бодлогын шийдүүдээс өгөгдсөн завсар дахь утгуудыг сонгох нэмэлт нөхцөл оруулсан нь сурагчдаас тригнометрийн илүү нарийн ойлголтыг шаардах юм. Сурагчид бодлогыг хураангуйлан энгийн хэлбэрт оруулж чаддаг ч шийдийг гаргах тэр тусмаа өгөгдсөн завсарт харьяалагдах шийдийг сонгохдоо үндсэн хүндрэлтэй тулдаг. Иймд бодолтуудыг анхааралтай судлаад ойлгон авахыг хичээгээрэй. Олон бодлого бодохдоо биш аргачлалыг ойлгох нь чухал.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4445 Бүртгүүлэх

Өнцөг гэдэг нь нэг цэгээс гарсан хоёр цацрагаар үүсэх геометрийн дүрс юм. Өөр хэлбэл ерөнхий эхлэлтэй хоёр цацрагийг өнцөг гэнэ. Өнцгийн бүрдүүлж буй цацрагуудыг өнцгийн талууд харин ерөнхий эхлэлийг өнцгийн орой гэдэг.

Тодорхойлолтыг ойлгохын тулд цацраг ухагдхуун -ы хичээлийг үзээрэй.

Жич: Хавтгайн геометрийн үндсэн ухагдхууныг ойлговол геометрийн бодлогыг бодоход хөнгөн. Иймээс Хавтгайн геометр багц хичээлүүдийг үзэхийг зөвлөе. Хичээлийг ойлголт бүрээр жижиг хэмжээтэй бэлтгэсэн тул судлахад хүндрэлгүй. Үндсэн ухагдхуунуудыг шууд цээжлэх гэж зүтгэлгүй бодлого бодохдоо тэдгээрийг ашиглан мартсан үедээ дахин эргэн харах байдлаар явбал аяндаа илүү сайн ойлгон тогтоон авдаг.

  Нээгдсэн тоо: 632 Нийтийн

Тэг тоонд нэгж байдаггүй тул түүнийг ямар нэгэн тоон дээр нэмэх эсхүл хасахад тухайн тоо өөрчлөгддөггүй.

arif03_02_01

  Нээгдсэн тоо: 2178 Төлбөртэй

Үл мэдэгдэгч нь тригнометрийн функцэд байгаа тэгшитгэлийг тригнометрийн тэгшитгэл гэнэ.

Тригнометрийн энгийн тэгшитгэлүүд

sin x=a
1 sin x=0, x=πk, k
2 sin x=1, x=π/2 + 2πk, k
3 sin x=-1, x=-π/2 + 2πk, k
4 sin x=a , |a| > 1  
5 sin x=a, |a|≤1  

  Нээгдсэн тоо: 1013 Төлбөртэй

Алгебрт эерэг, сөрөг тоонууд гэсэн ухагдхуун орж ирснээр үржих хуваах үйлдэлд тэмдгийг тодорхойлохын тулд арай өөр дүрмийг ашигладаг. Үржих, хуваах үйлдлийн тухайд өөрчлөлт байхгүй ч тэмдгийг тодорхойлох аргачлал эхлээд сурагчдад хүндрэл үүсгэх талтай. Гэхдээ хичээлийг үзэн багахан дадлага хийхэд бүх зүйл энгийн гэдгийг ойлгоно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 234

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 322

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 282

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 380

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 424

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 451

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 521

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 599

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 629

 
Энэ долоо хоногт

Тэмцээнд 16 шатарчин оролцсон. Нэгийн давааны хуваарийн хичнээн хувилбар байж болох вэ? / Хуьаарьт дор хаяж нэг өрөгт тоглох хүмүүс нь ялгаатай бол хувилбар гэж тооцно. Тоглох өнгө, ширээний дугаарыг тооцохгүй/

Нээгдсэн тоо : 1302

 

Нээгдсэн тоо : 1071

 

prob02_187_01 илэрхийллийг хялбарчил.

Нээгдсэн тоо : 181