Тригнометрийн бодолтын жишээ

Энэ нийтлэлээр бодит шалгалт дээр ирж байсан тригнометрийн хоёр бодлогын бодолтыг дэлгэрэнгүйгээр тайлбарлах болно. Эдгээр бодлогын бодолтыг сайн судлаад ойлговол тригнометрийн бодлогыг ойлгоход сайн суурь болж чадна. Бодлогын шийдүүдээс өгөгдсөн завсар дахь утгуудыг сонгох нэмэлт нөхцөл оруулсан нь сурагчдаас тригнометрийн илүү нарийн ойлголтыг шаардах юм. Сурагчид бодлогыг хураангуйлан энгийн хэлбэрт оруулж чаддаг ч шийдийг гаргах тэр тусмаа өгөгдсөн завсарт харьяалагдах шийдийг сонгохдоо үндсэн хүндрэлтэй тулдаг. Иймд бодолтуудыг анхааралтай судлаад ойлгон авахыг хичээгээрэй. Олон бодлого бодохдоо биш аргачлалыг ойлгох нь чухал.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 11634 Төлбөртэй

Тодорхойлогдох муж ба функцын утгын муж.

Элементар математикт функцыг зөвхөн бодит тоон R олонлогт авч үздэг. Энэ нь функцыг тодорхойлогдох аргументууд нь зөвхөн бодит утгуудыг авна гэсэн үг. Өөрөөр хэлбэл функц нь зөвхөн бодит утгатай. y=f(x) функц нь тодорхойлогдох аргумент x ийн бүх боломжит бодит утгын олонлог X ийг функцын тодорхойлогдох муж гэнэ. Функцын утга y ийн бүх бодит утгуудын олонлог Y ийг функцын утгын муж гэдэг. Эндээс функцын илүү оновчтой тодорхойлолтыг өгч болно. X олонлогийн гишүүн бүрт Y олонлогоос зөвхөн нэг гишүүн олдож байх X, Y олонлогуудын хоорондын харгалзах дүрмийг /хууль/ функц гэнэ.

  Нээгдсэн тоо: 14045 Төлбөртэй

Модултай тэгшитгэл, тэнцэтгэл биш, илэрхийллүүдээс сурагчид их айдаг. Модул тийм ч аймшигтай зүйл биш зүгээр л сургуульд түүнийг сайн тайлбарлан ойлголт өгдөггүйтэй холбоотой. Үүнээс үүдэн нэмэлт давтлага л авахгүй бол модул агуулсан бодлогыг сурагчдын ихэнх нь бодож чадахгүйд хүрдэг. Энэ юу гэсэн үг бэ гэвэл ЭЕШ-д модул ороод ирвэл та гарцаагүй оноо алдах эсхүл таахаас өөр замгүй болно. Иймээс энэ хичээлээр модулийн талаарх дутуу ойлголтыг дүүргэх гээд үзье. Айдсаа хойш тавь. Асуудал таны бодож байгаа шиг хүнд зүйл биш гэдгийг хичээлийн төгсгөлд ойлгох болно.

  Нээгдсэн тоо: 4513 Бүртгүүлэх

Уламжлал гэж юу болох, түүнийг хэрхэн олох, бодлогод яаж ашиглах зэрэг нь сурагчдад томоохон асуудал үүсгэдэг. Уламжлал нь математик анализын үндсэн ойлголтуудын нэг бөгөөд интегралын хамтаар мат анализд голлох байр суурийг эзэлдэг. Уламжлалыг сайн ойлгосноор их дээд сургуулийн дээд тооны хичээлүүдэд сайн сурах үндэс болохоос гадна элсэлтийн ерөнхий шалгалтын материалд хүндэд тооцогдох бодлогуудыг бодох суурь болно. Элсэлтийн шалгалтанд функцын өсөх буурах үеийг олох, хамгийн их болон бага утгыг тооцох, функцийн графикийн шүргэгчийг олох, функцийн уламжлалыг олох гэх мэтийн олон төрлийн бодлогуудыг уламжлал ашиглан бодоход хүрдэг. Иймд хичээлийн материалыг сайн ойлгон авснаар та элсэлтийн ерөнхий шалгалтанд дор хаяад 2-3 хүндхэнд тооцогдох бодлогыг амжилттай бодох боломжтой болох юм. Хичээлийг үзэж эхлэхийн өмнө Хязгаарыг ойлгох нь хичээлийг сайн үзээд бүрэн хэмжээнд ойлгосон байхыг чухалчлан зөвлөх байна. Учир нь уламжлал гэдэг бол хязгаар юм шүү дээ.

  Нээгдсэн тоо: 3160 Бүртгүүлэх

Тригнометрийн илэрхийллийг хялбарчлах аргууд, тэдгээрт ашиглах томьёонуудын талаарх хичээлээ үргэлжлүүлье. Тригнометрийн илэрхийллийг хялбарчлах арга техникийг сураагүй бол тригнометрийн тэгшитгэл, тэнцэтгэл бишийг бодох тухай яриад ч хэрэггүй. Тригнометр сэдэв нилээд олон тооны их төстэй хэлбэрийн томьёонуудтай байдаг нь тэдгээрийг цээжлэх, ашиглахад хүндрэлтэй байдал үүсгэх талтай.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 260

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 344

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 310

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 407

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 453

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 483

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 568

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 647

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 681

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1419

 

тэгшитгэл бод.

Нээгдсэн тоо : 1022

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1068