Испани өрөг. Берлиний хамгаалалт

Гроссмейстерүүд өрөгтөө хамгийн өргөн ашигладаг гараануудын нэг бол Испани өрөг. Гарааг зохиогчийг Руи Лопес гэж үздэг. Зарим улсуудад гарааг зохиогчийн нэрээр буюу "Руи Лопесийн /Ruy Lopez/ гараа" гэж нэрлэдэг. Гэсэн хэдий ч энэхүү гарааны талаарх анхны мэдээлэл XV-XVI зууны Испаний шатарчин Луис Рамирес де Лусений гарын авлагад дурдагдсан байдаг. Гараа нь нарийн, олон төрлийн схемтэйгээрээ онцлогтой. Гарааны онолын боловсруулалтад В. Стейниц, К. Яниш, М. Чигорин, Ф. Маршалл, З. Тарраш, А. Алехин, М. Эйве, П. Керес, В. Смыслов, И. Болеславский, И. Зайцев, С. Фурман, А. Карпов, Г. Каспаров, Г. Липский зэрэг олон тооны шатарчид их үүрэг гүйцэтгэсэн.
Испани өргийн санаа нь c6 -гийн хар морийг цагаан тэмээгээр дарах эсхүл авах тогтмол заналхийхэд оршихын дээр зарим хувилбарт e5 хар хүүг сулруулах зорилготой. Төрөл бүрийн шатрын програмууд гарааг цагаанд хамгийн ирээдүйтэйн нэг гэж үнэлэдэг.

Шатар сонирхогч болон суралцагчид шатрын гарааны мэдлэгээ дээшлүүлэх нь тоглолтын чанарт илт мэдэгдхүйц дэвшил авчирдаг. Иймд сайтад нийтлэгдэж буй гарааны хичээлүүдийг уншин судлаарай.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 464 Төлбөртэй

XIX зуунд энэ нүүдлийг Английн аварга Говард Стаунтон ихээр хэрэглэдэг байснаас гарааны нэр үүсэлтэй. Гараа маш олон төрлийн арга барилаар тоглох дуртай шатарчдын сонирхолд нийцсэн олон төрлийн байршлууд үүсдэгээрээ өнөө үед Англи гараа хамгийн өргөн хэрэглэдэг гараануудын нэг болсон. Энэхүү гараагаар дэлхийн аварга Каспаров тогтмол тоглодог байсанг дурдах нь зүйтэй. Англи гарааны зарим байгуулалт сицил хамгаалалтын төстэй байдаг.

Жич: Шатарт суралцах үндэс бол гарааны онолын мэдлэг. Сайтад өнөө цагт хамгийн ихээр тоглодог бүх гарааны хичээлүүд нийтлэгдсэн тул үзэж судлахыг зөвлөе.

  Нээгдсэн тоо: 1652 Төлбөртэй

Квадратын дүрэмийн тухай 2 хичээлд үндсэндээ хүү өөрийн шатруудын тусламжгүйгээр бэрс гарах оролдлого хийх талаар үзсэн. Практикт нүүргүй хүүнд өрсөлдөгч тал саад болох нь тодорхой тул түүнд өөрийн ноёны тусламж ихэнхдээ шаардлагатай болдог. Тухайн тохиолдол бүрд хүүнд тусламж хэрэгтэй эсэхийг тогтоох нь ойлгомжтой.
Ноёнгоор нүүргүй хүүд туслах үндсэн арга нь хүүний давшиж байгаа шугам ялангуяа бэрс гарах нүднээс эсрэг ноёнг шахах юм. Өөрөөр хэлбэл хоккей, хөл бөмбөгт тоглогчид шайб болон бөмбөгний төлөө тэмцдэгийн адилаар манай ноён өрсөлдөгч ноёнтой мөр мөрөөрөө түлхэлцэхтэй ижил. Жишээ авч үзье.

  Нээгдсэн тоо: 1881 Төлбөртэй

Нээж шалах гэдэг нь нээж дайрахын тухайн тохиолдол юм. Тактикийн энэхүү аргын үед нэг шатар нүүдэл хийхэд нээгдэж байгаа нөгөө шатар шалаа хийдэг. Нүүдэл хийн холдох шатарт бэрснээс бусад бүх шатрууд байж болох бол нээгдэн шалах шатарт бэрс, тэрэг, тэмээ гэсэн зөвхөн шулуун цохилт өгдөг боднууд орно. Энэхүү тагтикийн арга нь маш хорлонтой. Ялангуяа холдон нүүх шатар идэлт хийх эсвэл чухал обьектэд дайрах нь илүү хор хөнөөлтэй. Энэ үед өрсөлдөгчийн ноён шууд дайралтанд өртөж байдаг болохоор холдон нүүж өрсөлдөгчийн обьектэд довтолгоо хийж байгаа шатар өөрийн аюулгүй байдалд ямар ч санаа тавих шаардлагагүй байдаг. Өмнөх хичээлүүдэд нээж шалсан жишээнүүд нэг бус удаа гарч байсан. Дараах богинохон өргөөр жишээ авч үзье.

  Нээгдсэн тоо: 1312 Нийтийн

Гроссмейстерүүд өрөгтөө хамгийн өргөн ашигладаг гараануудын нэг бол Испани өрөг. Гарааг зохиогчийг Руи Лопес гэж үздэг. Зарим улсуудад гарааг зохиогчийн нэрээр буюу "Руи Лопесийн /Ruy Lopez/ гараа" гэж нэрлэдэг. Гэсэн хэдий ч энэхүү гарааны талаарх анхны мэдээлэл XV-XVI зууны Испаний шатарчин Луис Рамирес де Лусений гарын авлагад дурдагдсан байдаг. Гараа нь нарийн, олон төрлийн схемтэйгээрээ онцлогтой. Гарааны онолын боловсруулалтад В. Стейниц, К. Яниш, М. Чигорин, Ф. Маршалл, З. Тарраш, А. Алехин, М. Эйве, П. Керес, В. Смыслов, И. Болеславский, И. Зайцев, С. Фурман, А. Карпов, Г. Каспаров, Г. Липский зэрэг олон тооны шатарчид их үүрэг гүйцэтгэсэн.
Испани өргийн санаа нь c6 -гийн хар морийг цагаан тэмээгээр дарах эсхүл авах тогтмол заналхийхэд оршихын дээр зарим хувилбарт e5 хар хүүг сулруулах зорилготой. Төрөл бүрийн шатрын програмууд гарааг цагаанд хамгийн ирээдүйтэйн нэг гэж үнэлэдэг.

Шатар сонирхогч болон суралцагчид шатрын гарааны мэдлэгээ дээшлүүлэх нь тоглолтын чанарт илт мэдэгдхүйц дэвшил авчирдаг. Иймд сайтад нийтлэгдэж буй гарааны хичээлүүдийг уншин судлаарай.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 136

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 198

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 167

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 290

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 318

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 324

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 395

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 395

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 470

 
Энэ долоо хоногт

KLM суурьтай, KL=1, KK1=d талтай KLL1K1 тэгш өнцөгт хажуу бүхий KLMK1L1M1 призм өгөгджээ. KL_|_KM, LMM1 , KMM1 хавтгайнуудын хоорондын өнцөг 60°, бол утганд призмд түүний бүх талыг шүргэх шаарыг багтааж болно.

Нээгдсэн тоо : 1806

 

тоонд хуваахад гарах тооны аравтын бичлэгт "0" цифр хэдэн удаа орох вэ?

Нээгдсэн тоо : 1508

 

Нээгдсэн тоо : 1489