Хавтгай

Хавтгайн геометрийг зөв ойлгохын суурь бол түүний үндсэн ухагдхуунуудыг маш сайн ойлгосон байх юм. Үндсэн ухагдхууныг ойлгоогүй бол геометрийн бодлого, асуултыг ойлгон зураг гаргах, асуудлыг шийдэх зэргийг давна гэдэг хэцүү. Хичээлээр хавтгай болон геометрийн дүрсүүд ухагдхууныг авч үзье.

Хавтгай.

Хавтгай гэдэг нь орон зайд тэгш, гөлгөр, бүх тал руу хязгааргүй тархсан гадургуу юм.

Зурагт хавтгайн хэсгийг харуулсан болно.

Хязгааргүй тархасан гадаргуу тул түүнд хил байхгүй гэсэн үг. Иймээс хавтгайг ихэндээ тодорхой хэсгээр таслан авч үзэх нь илүү. Учир нь геометрт хавтгайг бүхэлд нь эзэлсэн зүйлийн талаар ярих утгагүй бөгөөд тухайн асуудалд яригдан буй дүрс, биетүүд ямар нэгэн хавтгай буюу түүний тодорхой хэсэгт байрлаж байгаа гэж үздэг.
Хавтгайнууд орон зайд байрлах тул өөр хоорондоо паралел, огтлолцсон, перпендикуляр гэх мэтээр олон төрлөөр байрлаж болно.

Зурагт гурван хавтгайг үзүүлсэн. Хавтгай1 , Хавтгай2 паралел бол Хавтгай3 нөгөө хоёртойгоо перпендикуляраар огтлолцсон.

Хагас хавтгай.

Хавтгай лээр ямар нэгэн шугам татвал хавтгай шугамаар хоёр хэсэгт хуваагдана. Эндээс хавтгай дээрх шугамаар таслагдсан хэсгийг хагас хавтгай гэнэ.

Зурагт хавтгайд a шулуун татан түүнийг хоёр хагас хавтгайд хуваасан. Муруй шугам татсан ч хоёр хагас хавтгайд хуваагдана. Гэхдээ хагас хавтгайнууд анхдагч хавтгайдаа байрлана гэдгийг ойлгох ёстой.

Геометрийн цэг.

Геометрийн цэг бол ямарч хэмжэгдэх шинж болон хэсэггүй абстракт обьект юм. Үүнийг сайн ойлгох ёстой. Өөрөөр хэлбэл цэг нь хавтгай эсхүл орон зай дахь тодорхой байрлалыг заана. Цэгүүдийг A, B, C ... гэх мэтээр латин том үсгээр тэмдэглэдэг. Цэг хэдийгээр абстракт обьект ч гэсэн геометрийн бүх дүрс, биетүүдийн суурь болдог. Энэ нь геометрийн дурын дүрс биетийг тодорхой байдлаар байрласан цэгүүдийн олонлог гэж үзэж болно гэсэн үг.   

Геометрийн биетүүд.

Геометрийн биет гэдэг нь цэг, шугам, гадаргуунуудын дурын хослолыг хэлнэ. Геометрийн биетүүд хавтгай болон орон зайн гэсэн хоёр хэсэгт хуваагдана.
Дүрсийг үүсгэх бүх цэгүүд нэг хавтгайд байрлах дүрсийг геометрийн хавтгай биет буюу дүрс гэнэ.

Дээрх зурагт үзүүлсэн дүрсүүдийг бүрдүүлж буй цэгүүд бүгд нэг хавтгай дээр байрлах тул эдгээр нь хавтгай дүрсүүд юм.
Дүрсийг үүсгэх цэгүүд бүгд нэг хавтгайд байрлахгүй дүрсийг геометрийн орон зайн биет гэнэ.

Зурагт үзүүлсэн биетийн доод суурь нэг хавтгайд нөгөө талстууд өөр хавтгайд байрлах учраас биет нь орон зайн биет гэсэн үг.
Нэг хавтгайд байрласанг хавтгай дүрс харин олон хавтгайд байрласанг орон зайн биет гэж ойлгоход болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 804 Бүртгүүлэх

Тоон завсар гэдэг нь координатийн шулуунд дүрсэлж болох тоон ологлог юм. Тоон завсарт цацраг, хэрчим, интервал, хагас интервалууд орно. Тоон олонлогуудыг функцийн тодорхойлогдох болон утгын муж, тэнцэлтгэл бишийн шийдүүд, тэнцэтгэл биш зэрэгт өргөн ашигладаг тул тэдгээрийн хэлбэр, тэмдэглэгээг бүрэн ойлгон мэдсэн байх хэрэгтэй.

  Нээгдсэн тоо: 5454 Нийтийн

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

  Нээгдсэн тоо: 15499 Төлбөртэй

Алгебрийн шугаман тэгшитгэлүүдийн системийг (АШТС) бодоход Гауссын арга их тохиромжтой. Энэ арга бусад аргуудтай харьцуулахад хэдэн давуу талтай.

  1. Тэгшитгэлийн системийг зохицож байгаа  эсэхийг урьдчилан шалгах шаардлагагүй
  2. Гауссын аргаар тэгшитгэлийн тоо нь үл мэдэгдэгчийн тоотой тохирсон системийг бодож болохын дээр тэгшитгэлийн тоо нь үл мэдэгдэгчийн тоотой тохирохгүй эсхүл үндсэн матрицийн тодорхойлогч тэгтэй тэнцүү системийг ч бодож болдог
  3. Гауссын арга харьцангуй бага тооцоогоор үр дүнд хүрдэг.

Үндсэн тодорхойлолт ба тэмдэглэгээнүүд

n үл мэдэгдэгчтэй p шугаман тэгшитгэлийн системийг авч үзье. (p болон n тэнцүү байж болно.)

  Нээгдсэн тоо: 2037 Төлбөртэй

Алгебрын суурь ухагдхууны нэг бол илэрхийллийг хялбарчлах байдаг. Өмнөх хичээлээр рационал бутархай гэж юу болох тэдгээрийг хялбарчилахад үржүүлэхийн хураангуй томьёог хэрхэн ашиглахыг сайн ойлгоогүй бол Рационал бутархайтай ажиллаж сурах I хичээлийг үзэхийг зөвлөе. Бодлого бодох суурь аргачлал илэрхийллийн хялбарчлал дээр тогтдог. Үүнийг сайн эзэмшээгүй үед ямарч бодлого танд хүндрэл үүсгэх бүрэн боломжтой. Иймээс хичээлийг анхааралтай сайн судлан ойлгон авахыг хичээгээрэй.

Нэг үзээд ойлгохгүй бол дахиад үз. Хэн ч таныг олон удаа үзлээ гэхгүй. Интернет сургалтын хамгийн том давуу тал энэ. Зарим хичээлийг үзэхийн тулд багахан төлбөр төлөх хэрэгтэйг Бүртгүүлэх, тусгай эрх нээлгэх нийтлэлээс үзээрэй.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 127

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 190

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 195

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 213

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 210

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 290

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 222

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 216

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 219

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2832

 

20 хувийн концентрацитай 18 гр уусмал дээр концентрацийг нь 4 хувиар нэмэгдүүлэхийн тулд 26 хувийн концентрацитай хичнээн грамм уусмал нэмж хийх шаардлагтай вэ?

Нээгдсэн тоо : 1265

 

тэгшитгэлийн шийдийг ол.

Нээгдсэн тоо : 1381