Хавтгай

Хавтгайн геометрийг зөв ойлгохын суурь бол түүний үндсэн ухагдхуунуудыг маш сайн ойлгосон байх юм. Үндсэн ухагдхууныг ойлгоогүй бол геометрийн бодлого, асуултыг ойлгон зураг гаргах, асуудлыг шийдэх зэргийг давна гэдэг хэцүү. Хичээлээр хавтгай болон геометрийн дүрсүүд ухагдхууныг авч үзье.

Хавтгай.

Хавтгай гэдэг нь орон зайд тэгш, гөлгөр, бүх тал руу хязгааргүй тархсан гадургуу юм.

Зурагт хавтгайн хэсгийг харуулсан болно.

Хязгааргүй тархасан гадаргуу тул түүнд хил байхгүй гэсэн үг. Иймээс хавтгайг ихэндээ тодорхой хэсгээр таслан авч үзэх нь илүү. Учир нь геометрт хавтгайг бүхэлд нь эзэлсэн зүйлийн талаар ярих утгагүй бөгөөд тухайн асуудалд яригдан буй дүрс, биетүүд ямар нэгэн хавтгай буюу түүний тодорхой хэсэгт байрлаж байгаа гэж үздэг.
Хавтгайнууд орон зайд байрлах тул өөр хоорондоо паралел, огтлолцсон, перпендикуляр гэх мэтээр олон төрлөөр байрлаж болно.

Зурагт гурван хавтгайг үзүүлсэн. Хавтгай1 , Хавтгай2 паралел бол Хавтгай3 нөгөө хоёртойгоо перпендикуляраар огтлолцсон.

Хагас хавтгай.

Хавтгай лээр ямар нэгэн шугам татвал хавтгай шугамаар хоёр хэсэгт хуваагдана. Эндээс хавтгай дээрх шугамаар таслагдсан хэсгийг хагас хавтгай гэнэ.

Зурагт хавтгайд a шулуун татан түүнийг хоёр хагас хавтгайд хуваасан. Муруй шугам татсан ч хоёр хагас хавтгайд хуваагдана. Гэхдээ хагас хавтгайнууд анхдагч хавтгайдаа байрлана гэдгийг ойлгох ёстой.

Геометрийн цэг.

Геометрийн цэг бол ямарч хэмжэгдэх шинж болон хэсэггүй абстракт обьект юм. Үүнийг сайн ойлгох ёстой. Өөрөөр хэлбэл цэг нь хавтгай эсхүл орон зай дахь тодорхой байрлалыг заана. Цэгүүдийг A, B, C ... гэх мэтээр латин том үсгээр тэмдэглэдэг. Цэг хэдийгээр абстракт обьект ч гэсэн геометрийн бүх дүрс, биетүүдийн суурь болдог. Энэ нь геометрийн дурын дүрс биетийг тодорхой байдлаар байрласан цэгүүдийн олонлог гэж үзэж болно гэсэн үг.   

Геометрийн биетүүд.

Геометрийн биет гэдэг нь цэг, шугам, гадаргуунуудын дурын хослолыг хэлнэ. Геометрийн биетүүд хавтгай болон орон зайн гэсэн хоёр хэсэгт хуваагдана.
Дүрсийг үүсгэх бүх цэгүүд нэг хавтгайд байрлах дүрсийг геометрийн хавтгай биет буюу дүрс гэнэ.

Дээрх зурагт үзүүлсэн дүрсүүдийг бүрдүүлж буй цэгүүд бүгд нэг хавтгай дээр байрлах тул эдгээр нь хавтгай дүрсүүд юм.
Дүрсийг үүсгэх цэгүүд бүгд нэг хавтгайд байрлахгүй дүрсийг геометрийн орон зайн биет гэнэ.

Зурагт үзүүлсэн биетийн доод суурь нэг хавтгайд нөгөө талстууд өөр хавтгайд байрлах учраас биет нь орон зайн биет гэсэн үг.
Нэг хавтгайд байрласанг хавтгай дүрс харин олон хавтгайд байрласанг орон зайн биет гэж ойлгоход болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 362 Бүртгүүлэх

Нийлбэр хоёроос дээш бүрдүүлэгч буюу нэмэгдхүүнүүүдтэй бол тооцоог хялбар  болгох үүднээс тэдгээрийг бүлэглэх аргыг өргөнөөр ашигладаг. Энэ нь нэмэх үйлдлийн байр солих, нэгтгэн нэмэх дүрмүүдийг хослуулан хэрэглэж байгаа аргачлал болохоос шинэ дүрэм биш.
Бүрдүүлэгчдийг бүлэглэнэ гэдэг нь тэдгээрийг хаалт ашиглан нэгтгэх аргачлал юм. Аргачлалыг нийлбэрийн тооцоог энгийн болгох зорилгоор ашигладаг тул нэмэгдхүүнүүдийн байрлал голлон өөрчлөгдөнө.

  Нээгдсэн тоо: 6331 Нийтийн

Порпорц

Порпорц гэдэг нь хоёр харьцааны тэнцэл юм.

порпорцоос ad=bc / диагнолд байрлах гишүүдийн үржвэр тэнцүү / гарна. Мөн түүнчлэн ad=bc тэнцлээс дараах порпорцууд гарна.

Эдгээр болон бусад порпорцыг анхны порпорцоос дараах дүрмээр гарган авна.

  Нээгдсэн тоо: 261 Бүртгүүлэх

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар өмнөх хичээлүүдэд үзээд байгаа.

Үржих бол ижил бүрдүүлэгчдийн нийлбэрийг олох арифметик үйлдэл.

Тодорхойлолтыг ойлгох үүднээс дараах жишээг авч үзье.
Зуслангийн хашаандаа нэг эгнээндээ 4 ширхэгээр 3 эгнээ гацуур суулгажээ. Зуслангийн хашаанд нийт хэдэн гацуур суулгасан бэ? Бодлогын нөхцлийг зургаар дүрсэлбэл

arif05_01

байна.

  Нээгдсэн тоо: 4953 Бүртгүүлэх

Хоёрдугаар эрэмбийн алгебрын тэгшитгэлийг квадрат тэгшитгэл гэнэ.

Энд a, b, c өгөгдсөн тоон болон үсгэн коэффициентууд. x нь үл мэдэгдэгч. Хэрвээ a=0 бол шугаман тэгшитгэл болно. Иймээс бид энд зөвхөн a≠0 тохиолдолыг авч үзнэ. Тэгвэл тэгшитгэлийн бүх гишүүдийг a -д хуваавал дараах тэгшитгэл гарна.

Энд p=b/a, q=c/a. [2] тэгшитгэлийг эмхэтгэсэн квадрат тэгшитгэл гэдэг. Харин [1] тэгшитгэлийг гүйцэд квадрат тэгшитгэл гэнэ. Хэрвээ b эсвэл c эсвэл хоёулаа тэгтэй тэнцүү тохиолдолд тэгшитгэлийг дутуу квадрат тэгшитгэл гэнэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 209

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 290

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 250

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 353

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 401

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 420

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 486

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 553

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 581

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1096

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 304