Хавтгай

Хавтгайн геометрийг зөв ойлгохын суурь бол түүний үндсэн ухагдхуунуудыг маш сайн ойлгосон байх юм. Үндсэн ухагдхууныг ойлгоогүй бол геометрийн бодлого, асуултыг ойлгон зураг гаргах, асуудлыг шийдэх зэргийг давна гэдэг хэцүү. Хичээлээр хавтгай болон геометрийн дүрсүүд ухагдхууныг авч үзье.

Хавтгай.

Хавтгай гэдэг нь орон зайд тэгш, гөлгөр, бүх тал руу хязгааргүй тархсан гадургуу юм.

Зурагт хавтгайн хэсгийг харуулсан болно.

Хязгааргүй тархасан гадаргуу тул түүнд хил байхгүй гэсэн үг. Иймээс хавтгайг ихэндээ тодорхой хэсгээр таслан авч үзэх нь илүү. Учир нь геометрт хавтгайг бүхэлд нь эзэлсэн зүйлийн талаар ярих утгагүй бөгөөд тухайн асуудалд яригдан буй дүрс, биетүүд ямар нэгэн хавтгай буюу түүний тодорхой хэсэгт байрлаж байгаа гэж үздэг.
Хавтгайнууд орон зайд байрлах тул өөр хоорондоо паралел, огтлолцсон, перпендикуляр гэх мэтээр олон төрлөөр байрлаж болно.

Зурагт гурван хавтгайг үзүүлсэн. Хавтгай1 , Хавтгай2 паралел бол Хавтгай3 нөгөө хоёртойгоо перпендикуляраар огтлолцсон.

Хагас хавтгай.

Хавтгай лээр ямар нэгэн шугам татвал хавтгай шугамаар хоёр хэсэгт хуваагдана. Эндээс хавтгай дээрх шугамаар таслагдсан хэсгийг хагас хавтгай гэнэ.

Зурагт хавтгайд a шулуун татан түүнийг хоёр хагас хавтгайд хуваасан. Муруй шугам татсан ч хоёр хагас хавтгайд хуваагдана. Гэхдээ хагас хавтгайнууд анхдагч хавтгайдаа байрлана гэдгийг ойлгох ёстой.

Геометрийн цэг.

Геометрийн цэг бол ямарч хэмжэгдэх шинж болон хэсэггүй абстракт обьект юм. Үүнийг сайн ойлгох ёстой. Өөрөөр хэлбэл цэг нь хавтгай эсхүл орон зай дахь тодорхой байрлалыг заана. Цэгүүдийг A, B, C ... гэх мэтээр латин том үсгээр тэмдэглэдэг. Цэг хэдийгээр абстракт обьект ч гэсэн геометрийн бүх дүрс, биетүүдийн суурь болдог. Энэ нь геометрийн дурын дүрс биетийг тодорхой байдлаар байрласан цэгүүдийн олонлог гэж үзэж болно гэсэн үг.   

Геометрийн биетүүд.

Геометрийн биет гэдэг нь цэг, шугам, гадаргуунуудын дурын хослолыг хэлнэ. Геометрийн биетүүд хавтгай болон орон зайн гэсэн хоёр хэсэгт хуваагдана.
Дүрсийг үүсгэх бүх цэгүүд нэг хавтгайд байрлах дүрсийг геометрийн хавтгай биет буюу дүрс гэнэ.

Дээрх зурагт үзүүлсэн дүрсүүдийг бүрдүүлж буй цэгүүд бүгд нэг хавтгай дээр байрлах тул эдгээр нь хавтгай дүрсүүд юм.
Дүрсийг үүсгэх цэгүүд бүгд нэг хавтгайд байрлахгүй дүрсийг геометрийн орон зайн биет гэнэ.

Зурагт үзүүлсэн биетийн доод суурь нэг хавтгайд нөгөө талстууд өөр хавтгайд байрлах учраас биет нь орон зайн биет гэсэн үг.
Нэг хавтгайд байрласанг хавтгай дүрс харин олон хавтгайд байрласанг орон зайн биет гэж ойлгоход болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1613 Төлбөртэй

Нэг болон хоёр үл мэдэгдэгчтэй тэнцэл биш, тэнцэл бишийн системүүдийг функцын графикаар ойролцоогоор бодож болдог. Нэг үл мэдэгдэгчтэй тэнцэл бишийг бодохдоо бүх гишүүдийг тэнцэл бишийн нэг талд гарган f ( x ) > 0  хэлбэрт оруулаад f ( x ) = 0 функцын графикийг байгуулна. Үүний дараа графикийг ашиглан функцын тэгүүдийг олно. Эдгээр нь X тэнхлэгийг хэд хэдэн хэсэгт хуваасан байх бөгөөд x-ийн аль хэсэгт функцын утга тэнцэл бишийн утгатай давхцаж байгааг тодорхойлно.
Жишээлбэл: функцын тэгүүд нь a,b /Зур. 30/ гэе. Тэгвэл графикаас f ( x ) > 0 байх хэсэг нь x<a ба x>b гэдэг нь тодорхой. Эдгээр хэсгийг тодруулсан байгаа. Энд > тэмдгийн оронд <,  ≤, ≥ тэмдгүүдийн аль нь ч байж болно.

  Нээгдсэн тоо: 4691 Төлбөртэй

Функцын дифференциалчлал тасалдалгүй байдлын хоорондын холбоо

Ямар нэг цэг дээр f(x) функц нь дифференциалчлагдаж байвал тэр цэгт функц тасралтгүй байна. Эсрэгээсээ энэ нь буруу байдаг. Тасралтгүй функц нь уламжлалгүй байж болно.
Мөрдлөг. Хэрвээ функц нь ямар нэгэн цэг дээр тасарч байвал энэ цэг дээр функц нь уламжлалгүй.

Жишээ
y=|x| функц нь /Зур. 3/ тасралтгүй. Гэвч x=0 цэгт функцын график нь шүргэгчгүй тул уламжлал байхгүй.

  Нээгдсэн тоо: 6219 Төлбөртэй

Логарифм бол ЕБ сургуулийн математикийн хичээлийн хүндхэн сэдэвт ордог. Гэхдээ ерөнхий ойлголтыг зөв авсан байхад сэдэв нь тийм хүнд биш гэдгийг та энэхүү хичээлийг үзээд мэдрэх болно. Гол зүйл бол логарифмын үндсэн тодорхойлолт, түүнийг хэрхэн тооцоход л байгаа юм. Үүнийг сайн ойлгосон байхад цаашид логарифм илэрхийлэл, тэгшитгэл, тэнцэтгэл бишүүдийг бодоход онцын хүндрэл гарах ёсгүй. Логарифмын бодлогуудыг математикийн бүхий л илэрхийлэл, тэгшитгэл, тэнцэтгэл бишүүдийг боддог ерөнхий аргачлалын дагуу тэдгээрийг эхлээд хялбарчлан энгийн хэлбэрт оруулаад эцэст нь үндсэн тодорхойлолтыг ашиглан боддог. За ингээд логарифм гэж юу болохыг ойлгоцгооё.

  Нээгдсэн тоо: 6566 Бүртгүүлэх

Шулуун ба хавтгайн паралел байх шинжүүд

  • Хавтгайд үл орших шулуун нь хавтгай дээр байгаа ямар нэгэн шулуунтай паралел байвал энэ шулуун нь хавтгайтай паралел байна.
  • Хэрвээ шулуун ба хавтгай нь нэг шулуунтай хоёулаа перпендикуляр байвал тэдгээр нь хоорондоо паралел байна.

Хавтгайнууд паралел байх шинжүүд

  • Нэг хавтгай дээрх огтлолцсон хоёр шулуун нь нөгөө хавтгайн огтлолцсон хоёр шулуунтай паралел байвал шулуунуудыг агуулж байгаа хавтгайнууд паралел байна.
  • Хэрвээ хоёр хавтгай нь нэг шулуунтай хоёулаа перпендикуляр байвал тэдгээр нь хоорондоо паралел байна.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 65

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 95

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 101

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 124

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 125

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 179

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 119

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 116

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 126

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1168

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1088

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 840