Хавтгай

Хавтгайн геометрийг зөв ойлгохын суурь бол түүний үндсэн ухагдхуунуудыг маш сайн ойлгосон байх юм. Үндсэн ухагдхууныг ойлгоогүй бол геометрийн бодлого, асуултыг ойлгон зураг гаргах, асуудлыг шийдэх зэргийг давна гэдэг хэцүү. Хичээлээр хавтгай болон геометрийн дүрсүүд ухагдхууныг авч үзье.

Хавтгай.

Хавтгай гэдэг нь орон зайд тэгш, гөлгөр, бүх тал руу хязгааргүй тархсан гадургуу юм.

Зурагт хавтгайн хэсгийг харуулсан болно.

Хязгааргүй тархасан гадаргуу тул түүнд хил байхгүй гэсэн үг. Иймээс хавтгайг ихэндээ тодорхой хэсгээр таслан авч үзэх нь илүү. Учир нь геометрт хавтгайг бүхэлд нь эзэлсэн зүйлийн талаар ярих утгагүй бөгөөд тухайн асуудалд яригдан буй дүрс, биетүүд ямар нэгэн хавтгай буюу түүний тодорхой хэсэгт байрлаж байгаа гэж үздэг.
Хавтгайнууд орон зайд байрлах тул өөр хоорондоо паралел, огтлолцсон, перпендикуляр гэх мэтээр олон төрлөөр байрлаж болно.

Зурагт гурван хавтгайг үзүүлсэн. Хавтгай1 , Хавтгай2 паралел бол Хавтгай3 нөгөө хоёртойгоо перпендикуляраар огтлолцсон.

Хагас хавтгай.

Хавтгай лээр ямар нэгэн шугам татвал хавтгай шугамаар хоёр хэсэгт хуваагдана. Эндээс хавтгай дээрх шугамаар таслагдсан хэсгийг хагас хавтгай гэнэ.

Зурагт хавтгайд a шулуун татан түүнийг хоёр хагас хавтгайд хуваасан. Муруй шугам татсан ч хоёр хагас хавтгайд хуваагдана. Гэхдээ хагас хавтгайнууд анхдагч хавтгайдаа байрлана гэдгийг ойлгох ёстой.

Геометрийн цэг.

Геометрийн цэг бол ямарч хэмжэгдэх шинж болон хэсэггүй абстракт обьект юм. Үүнийг сайн ойлгох ёстой. Өөрөөр хэлбэл цэг нь хавтгай эсхүл орон зай дахь тодорхой байрлалыг заана. Цэгүүдийг A, B, C ... гэх мэтээр латин том үсгээр тэмдэглэдэг. Цэг хэдийгээр абстракт обьект ч гэсэн геометрийн бүх дүрс, биетүүдийн суурь болдог. Энэ нь геометрийн дурын дүрс биетийг тодорхой байдлаар байрласан цэгүүдийн олонлог гэж үзэж болно гэсэн үг.   

Геометрийн биетүүд.

Геометрийн биет гэдэг нь цэг, шугам, гадаргуунуудын дурын хослолыг хэлнэ. Геометрийн биетүүд хавтгай болон орон зайн гэсэн хоёр хэсэгт хуваагдана.
Дүрсийг үүсгэх бүх цэгүүд нэг хавтгайд байрлах дүрсийг геометрийн хавтгай биет буюу дүрс гэнэ.

Дээрх зурагт үзүүлсэн дүрсүүдийг бүрдүүлж буй цэгүүд бүгд нэг хавтгай дээр байрлах тул эдгээр нь хавтгай дүрсүүд юм.
Дүрсийг үүсгэх цэгүүд бүгд нэг хавтгайд байрлахгүй дүрсийг геометрийн орон зайн биет гэнэ.

Зурагт үзүүлсэн биетийн доод суурь нэг хавтгайд нөгөө талстууд өөр хавтгайд байрлах учраас биет нь орон зайн биет гэсэн үг.
Нэг хавтгайд байрласанг хавтгай дүрс харин олон хавтгайд байрласанг орон зайн биет гэж ойлгоход болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4910 Нийтийн

Зарим тодорхой интегралууд



  Нээгдсэн тоо: 6186 Нийтийн

Порпорц

Порпорц гэдэг нь хоёр харьцааны тэнцэл юм.

порпорцоос ad=bc / диагнолд байрлах гишүүдийн үржвэр тэнцүү / гарна. Мөн түүнчлэн ad=bc тэнцлээс дараах порпорцууд гарна.

Эдгээр болон бусад порпорцыг анхны порпорцоос дараах дүрмээр гарган авна.

  Нээгдсэн тоо: 394 Нийтийн

Математикийн бүх ухагдхуун, сэдвүүд бие биетэйгээ маш нягт холөоотой. Арифметик бол математикийн суурь. Иймээс арифметикийг сайн ойлгон авбал цааш алгебрт суралцахад дөхөм болох учиртай. Ахлах ангийнханд арифметикийн хичээлүүд хэт энгийн хөнгөн мэт санагдаж болно. Арифметикийг судлаж буй хүүхэд багачууд болон тэдний эцэг, эхүүдэд ийм материалууд хэрэг болох л учиртай.

  Нээгдсэн тоо: 2521 Төлбөртэй

Энэ нийтлэлээр бодит шалгалт дээр ирж байсан тригнометрийн хоёр бодлогын бодолтыг дэлгэрэнгүйгээр тайлбарлах болно. Эдгээр бодлогын бодолтыг сайн судлаад ойлговол тригнометрийн бодлогыг ойлгоход сайн суурь болж чадна. Бодлогын шийдүүдээс өгөгдсөн завсар дахь утгуудыг сонгох нэмэлт нөхцөл оруулсан нь сурагчдаас тригнометрийн илүү нарийн ойлголтыг шаардах юм. Сурагчид бодлогыг хураангуйлан энгийн хэлбэрт оруулж чаддаг ч шийдийг гаргах тэр тусмаа өгөгдсөн завсарт харьяалагдах шийдийг сонгохдоо үндсэн хүндрэлтэй тулдаг. Иймд бодолтуудыг анхааралтай судлаад ойлгон авахыг хичээгээрэй. Олон бодлого бодохдоо биш аргачлалыг ойлгох нь чухал.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 58

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 90

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 85

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 203

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 245

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 254

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 297

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 285

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 369

 
Энэ долоо хоногт

функцийн интервал дахь хамгийн бага утгыг ол.

Нээгдсэн тоо : 855

 

Зөв дөрвөн өнцөгт пирамидын өндөр 4. Хажуу ирмэг суурийн хавтгайд 30 градусын өнцгөөр налсан бол пирамидын хажуу ирмэгийг ол.

Нээгдсэн тоо : 1848

 

бол M·N=?

Нээгдсэн тоо : 1161