Квадрат тэгшитгэлийг бодох аргууд.

Бодлогыг олон янзаар бодох аргуудыг эзэмших нь бодлого бодох техникт маш сайнаар нөлөөлөн ямарч бодлогыг өөр өнцгөөс харан шийдлийн олон санааг төрүүлдэг тул энэ удаад 3x2+7x-10=0 тэгшитгэлийг бодох аргуудыг авч үзье. Тэгшитгэлийн коэффициентүүдийг a - квадрат зэрэгтэй гишүүний, b - нэгдүгээр эрэмбийн гишүүний , c - сул гишүүн гэж тэмдэглэе.

Уламжлалт дискриминантаар бодох арга.

Квадрат тэгшитгэлийн дискриминантийг олох томьёогоор гэж гарна. Дискриминант эерэг тоо учраас квадрат тэгшитгэл хоёр шийдтэй. Квадрат тэгшитгэлийн шийдийг олдог томьёоны дагуу тэгшитгэл шийдүүдтэй гэж гарна.

Коэффициентийн нийлбэрээр олох арга.

Тэгшитгэлийн коэффициентүүдийн нийлбэрийг олъё. Анхдагч тэгшитгэлээс x -ийг хасвал 3+7-10=0 гэсэн адитгал гарна. Коэффициентүүдийн нийлбэрийн нийлбэрийн аргад тэгшитгэлийн коэффициентүүдийн нийлбэр тэгтэй тэнцүү бол тэгшитгэлийн нэг шийд 1 харин нөгөө шийд c/a -тай тэнцүү байдаг гэдгээс x1=1; x2=-10/3 гэж гарна.

Виетийн теоремоор бодох

Тэгшитгэлийг Виетийн теоремоор бодохын тулд тэгшитгэлийн хоёр талыг x2 гишүүний коэффициентод хуваан эмхэтгэсэн тэгшитгэлийн хэлбэрт оруулъя. хэлбэрийн эмхэтгэсэн тэгшитгэлийн хувьд Виетийн теоремоор систем биелэх ёстой. ЕБС -д Виетийн теоремийн системд тэгшитгэлүүдийн байрыг сольж заагаад байдаг. Эхлээд үржвэрийг хангах шийдүүдийг сонгох нь амар байдаг тул системийн эхний тэгшитгэлд үржвэр байдгаар тогтоовол илүү. Манай тэгшитгэлийн хувьд -10/3 утгыг өгөх хамгийн энгийн тоонууд бол 1 ба -10/3 юм. Эдгээр тоог хоёрдугаар тэгшитгэлд тавин шалгавал 1-10/3=-7/3 гэж -p гарч ирснээр тэгшитгэл x1=1; x2=-10/3 шийдтэй нь батлагдлаа.

Шилжүүлэх аргаар бодох

Шилжүүлэх аргад x2 гишүүний коэффициентийг сул гишүүнд шилжүүлэн үржүүлэн туслах тэгшитгэлийг гаргадаг. Тэгвэл анхдагч тэгшитгэлээс гэсэн туслах тэгшитгэл гарч ирнэ. Сүүлийн тэгшитгэлийн шийдийг Виетийн теоремоор олвол үржвэр нь -30 харин нийлбэр нь -7 буюу 1 -р эрэмбийн гишүүний коэффициентийг сөрөг тэмдэгтэй авсантай ижил утгууд өгөх -10, 3 тоонууд байна. Туслах тэгшитгэлийн шийдээс анхдагч тэгшитгэлийн шийдийг олохдоо шийдүүдийг анхдагч тэгшитгэлийн x2 гишүүнээс шилжүүлсэн коэффициентод хуваадаг тул x1=1; x2=-10/3 шийдүүд гарна.

Бүрэн квадратийг ялгах арга

Тэгшитгэлээс бүрэн квадратыг ялгахын тулд тэгшитгэлийн хоёр талыг x2 гишүүний коэффициентод хуваан эмхэтгэсэн тэгшитгэлийн хэлбэрт оруулъя. 1 -р эрэмбийн үл мэдэгчийн коэффициент эерэг учраас нийлбэрийн квадратыг ялгах гэж оролдох хэрэгтэй. Хэрвээ коэффициент сөрөг байсан бол ялгаварын квадратыг ялгах гэж оролдох нь зүйн хэрэг. Тэгшитгэлийн x2 бол a2 -тай ижил тул эхний гишүүн бэлэн гэсэн үг. Задаргааны 2ab гишүүний a бол x харин бидэнд 2 болон b байхгүй. Тэгшитгэлийн хоёрдугаар гишүүнийг 2 -оор үржүүлээд 2 -т хуваавал болно. Эндээс 2x бол 2a тул b=7/6 болж таарна. Бүрэн квадрат гарч ирэхэд b2 дутуу тул түүнийг тэгшитгэлд нэмээд, хасвал болно. Тэгшитгэлийн эхний гурван гишүүн томьёо гэдгээс тэгшитгэлд хувиргалтыг хийвэл

болно. Квадрат язгуур аваад шийдийг олвол гэж гарна. Бүрэн квдрат ялгах аргаар тэгшитгэлийг бодох нь арай ажиллагаа ихтэй боловч илэрхийллийг хувирган эмхэтгэхэд голлон хэрэглэдэг аргачлал тул квадрат ялгаж байгаа техникийг сайн ойлгон тогтоон авахыг зөвлөе.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 7735 Бүртгүүлэх

x2=a гэсэн дутуу квадрат тэгшитгэлийг авч үзье. Энд a - тодорхой тоо. Энэ тэгшитгэлийн шийд нь

болно.

Энд гурван тохиолдол гарна.

1. Хэрвээ a=0 бол x=0
2. Хэрвээ a нь эерэг тоо бол тэгшитгэл эерэг, сөрөг хоёр шийдтэй.

Жишээ
тэгшитгэл нь 5, -5 гэсэн хоёр шийдтэй. Шийдийг дараах хэлбэрээр гэж бичдэг.

  Нээгдсэн тоо: 5886 Бүртгүүлэх

Вектор ба түүний үйлдлүүдийн талаар энэ хичээлээр авч үзье. Вектортой холбоотой бодлогууд дээр сурагчид будлих, алдаа гаргах нь элбэг байдаг. Ойлголт энгийн мэт боловч векторуудын нийлбэр, ялгавар, үржвэр зэргийг зөв ойлгохгүйгээр бодлого бодоход хүндрэл үүснэ. ЕБС-д энэ сэдвийн хичээлийг их өнгөцхөн үздэгээс сурагчид дутуу ойлгон улмаар бодлогод дээр дүрмүүдийг хэрэглэхдээ их сул байдаг. Иймээс вектор түүнтэй хийгдэх үйлдлүүдийг нэг мөр цэгцлэн тэдгээрийг бодлого бодоход ашиглаж сурахад хичээл зориулагдсан. Эхлээд ерөнхий ойлголтуудын талаар.

  Нээгдсэн тоо: 14670 Нийтийн

Аравтын бутархай нь нэгжийг арав, зуу, мянга г.м хуваасны үр дүнд гарах хэсэг юм. Энэ бутархай нь бүхэл тооны бичлэгийн систем дээр үндэслэгдсэн тул тооцоолоход маш тохиромжтой. Иймээс аравтын бутархайн үйлдлүүд нь бүхэл тоон үйлдлүүдтэй бараг адилхан. Аравтын бутархайн бичлэгт хуваарийг бичих шаардлагагүй. Энэ нь тухайн тооны байрлалаар тодорхойлогдож байдаг. Бичлэг нь эхлээд тооны бүхэл хэсэг, дараа нь аравтын таслал тэгээд бутархай хэсэг. Аравтын таслалын дараагийн эхний тоо аравтын, хоёр дахь тоо нь зуутын, гурав дахь тоо нь мянгатын г.м заана. Аравтын таслалын дараа байрлах тоонуудыг аравтын орнууд гэнэ. Жишээ

  Нээгдсэн тоо: 1033 Бүртгүүлэх

Хавтгайн геометрүүдийн үндсэн ухагдхуун, тодорхойлолт, оноосон нэрүүдийг мэдэхгүйгээс геометрийн бодлогыг бодох үед үүсдэг хүндрэлүүд гарч ирдэг. Бодлогын нөхцөлд медиан, гадаад өнцөг, өндөр, биссектрис гэх мэтээр ухагдхуунуудыг оноосон нэрээр нь шууд өгөхөөс өөр арга байхгүй. Хэрвээ эдгээрийн тодорхойлолтыг мэдэхгүй бол тухайн бодлогыг бодохгүй. Хариу нь өгөгдсөн тестийн хувьд таагаад өнгөрөх ч эндээс л өөрийгөө хуурах замаа эхэлж байгаа нь тэр гэж ойлгоорой. Иймээс сайтын хичээлүүдийг үзэн суурь ойлголтуудыг ойлгон авахыг зөвлөе.

Цэсийг нээх хаах ажиллагааг хариуцах компонентийг боловсруулсан тул энэ хичээлээр програмийн удирдах цэсийг…

Нээгдсэн тоо : 3

 

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 12

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 14

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 16

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 13

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2219

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 549