Квадрат тэгшитгэлийг бодох аргууд.

Бодлогыг олон янзаар бодох аргуудыг эзэмших нь бодлого бодох техникт маш сайнаар нөлөөлөн ямарч бодлогыг өөр өнцгөөс харан шийдлийн олон санааг төрүүлдэг тул энэ удаад 3x2+7x-10=0 тэгшитгэлийг бодох аргуудыг авч үзье. Тэгшитгэлийн коэффициентүүдийг a - квадрат зэрэгтэй гишүүний, b - нэгдүгээр эрэмбийн гишүүний , c - сул гишүүн гэж тэмдэглэе.

Уламжлалт дискриминантаар бодох арга.

Квадрат тэгшитгэлийн дискриминантийг олох томьёогоор гэж гарна. Дискриминант эерэг тоо учраас квадрат тэгшитгэл хоёр шийдтэй. Квадрат тэгшитгэлийн шийдийг олдог томьёоны дагуу тэгшитгэл шийдүүдтэй гэж гарна.

Коэффициентийн нийлбэрээр олох арга.

Тэгшитгэлийн коэффициентүүдийн нийлбэрийг олъё. Анхдагч тэгшитгэлээс x -ийг хасвал 3+7-10=0 гэсэн адитгал гарна. Коэффициентүүдийн нийлбэрийн нийлбэрийн аргад тэгшитгэлийн коэффициентүүдийн нийлбэр тэгтэй тэнцүү бол тэгшитгэлийн нэг шийд 1 харин нөгөө шийд c/a -тай тэнцүү байдаг гэдгээс x1=1; x2=-10/3 гэж гарна.

Виетийн теоремоор бодох

Тэгшитгэлийг Виетийн теоремоор бодохын тулд тэгшитгэлийн хоёр талыг x2 гишүүний коэффициентод хуваан эмхэтгэсэн тэгшитгэлийн хэлбэрт оруулъя. хэлбэрийн эмхэтгэсэн тэгшитгэлийн хувьд Виетийн теоремоор систем биелэх ёстой. ЕБС -д Виетийн теоремийн системд тэгшитгэлүүдийн байрыг сольж заагаад байдаг. Эхлээд үржвэрийг хангах шийдүүдийг сонгох нь амар байдаг тул системийн эхний тэгшитгэлд үржвэр байдгаар тогтоовол илүү. Манай тэгшитгэлийн хувьд -10/3 утгыг өгөх хамгийн энгийн тоонууд бол 1 ба -10/3 юм. Эдгээр тоог хоёрдугаар тэгшитгэлд тавин шалгавал 1-10/3=-7/3 гэж -p гарч ирснээр тэгшитгэл x1=1; x2=-10/3 шийдтэй нь батлагдлаа.

Шилжүүлэх аргаар бодох

Шилжүүлэх аргад x2 гишүүний коэффициентийг сул гишүүнд шилжүүлэн үржүүлэн туслах тэгшитгэлийг гаргадаг. Тэгвэл анхдагч тэгшитгэлээс гэсэн туслах тэгшитгэл гарч ирнэ. Сүүлийн тэгшитгэлийн шийдийг Виетийн теоремоор олвол үржвэр нь -30 харин нийлбэр нь -7 буюу 1 -р эрэмбийн гишүүний коэффициентийг сөрөг тэмдэгтэй авсантай ижил утгууд өгөх -10, 3 тоонууд байна. Туслах тэгшитгэлийн шийдээс анхдагч тэгшитгэлийн шийдийг олохдоо шийдүүдийг анхдагч тэгшитгэлийн x2 гишүүнээс шилжүүлсэн коэффициентод хуваадаг тул x1=1; x2=-10/3 шийдүүд гарна.

Бүрэн квадратийг ялгах арга

Тэгшитгэлээс бүрэн квадратыг ялгахын тулд тэгшитгэлийн хоёр талыг x2 гишүүний коэффициентод хуваан эмхэтгэсэн тэгшитгэлийн хэлбэрт оруулъя. 1 -р эрэмбийн үл мэдэгчийн коэффициент эерэг учраас нийлбэрийн квадратыг ялгах гэж оролдох хэрэгтэй. Хэрвээ коэффициент сөрөг байсан бол ялгаварын квадратыг ялгах гэж оролдох нь зүйн хэрэг. Тэгшитгэлийн x2 бол a2 -тай ижил тул эхний гишүүн бэлэн гэсэн үг. Задаргааны 2ab гишүүний a бол x харин бидэнд 2 болон b байхгүй. Тэгшитгэлийн хоёрдугаар гишүүнийг 2 -оор үржүүлээд 2 -т хуваавал болно. Эндээс 2x бол 2a тул b=7/6 болж таарна. Бүрэн квадрат гарч ирэхэд b2 дутуу тул түүнийг тэгшитгэлд нэмээд, хасвал болно. Тэгшитгэлийн эхний гурван гишүүн томьёо гэдгээс тэгшитгэлд хувиргалтыг хийвэл

болно. Квадрат язгуур аваад шийдийг олвол гэж гарна. Бүрэн квдрат ялгах аргаар тэгшитгэлийг бодох нь арай ажиллагаа ихтэй боловч илэрхийллийг хувирган эмхэтгэхэд голлон хэрэглэдэг аргачлал тул квадрат ялгаж байгаа техникийг сайн ойлгон тогтоон авахыг зөвлөе.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3592 Төлбөртэй

Өнцөг

Огтлолцсон хоёр шулууны хоорондох өнцгийг хавтгайн геометрийн адилаар хэмжинэ. Учир нь эдгээр шулууныг дайруулан хавтгай татаж болдог. Паралел хоёр шулууны хоорондын өнцөг нь 0 эсвэл . Зөрсөн AB ба CD /Зур. 70/ хоёр шулууны хоорондын өнцгийг дараах байдлаар тодорхойлно.
Дурын O цэгийг дайруулаад OM || AB ба ON || CD байх OM, ON цацрагийг татна. Тэгвэл AB ба CD гийн хоорондох өнцөг нь NOM тэй тэнцүү гэж үзнэ. Өөр хэлбэл AB ба CD шулууныг өөртөө нь паралел байдлаар огтлолцох хүртэл нь шилжүүлнэ гэсэн үг. Тухайлбал O цэгийг AB ба CD шулуунуудын аль нэг дээр авч болно. Энэ тохиолдолд O цэг нь хөдөлгөөнгүй байна.

  Нээгдсэн тоо: 18467 Нийтийн

Нэг хавтгай дээр орших хоорондоо огтлолцодгүй /Зур. 11/ AB ба CD шулуунуудыг паралель шулуун гэдэг бөгөөд AB || CD гэж тэмдэглэнэ. Паралель шугамын нэг дээр байрлах цэг нөгөө шугаман дээр байрлах цэгээс ижил зайд байна. Паралель шугамын хоорондох өнцөгийг тэг гэж үздэг. Нэг чигт чиглэсэн хоёр паралель цацрагийн хоорондох өнцөг тэгтэй , эсрэг чиглэлтэй тохиолдолд тэнцүү. KM шулуунтай перпендикуляр AB, CD, EF /Зур. 12/  шулуунууд нь өөр хоорондоо паралель байна. Паралель хоёр шулуунтай перпендикуляр шулууны урт нь паралель шулуунуудын хоорондын зай болно.

  Нээгдсэн тоо: 3403 Төлбөртэй

Тригнометрийн ямарч түвшингийн тэгшитгэлүүд эцэстээ тригнометрийн энгийн тэгшитгэлийн бодолтонд шилждэг. Иймд тригнометрийн энгийн тэгшитгэлийг бодож сурсан байх нь зайлшгүй хэрэгтэй. Энэ үед хамгийн сайн туслах бол тригнометрийн нэгж тойрог байдаг. Синус болон косинусын тодорхойлолтыг санацгаая.
Өнцгийн косинус гэдэг бол нэгж тойрог дээрх тухайн өнцөгт харгалзах цэгийн абсцисс байдаг. Өөрөөр хэлбэл цэгийн OX тэнхлэг дээрх координат юм.
Өнцгийн синус гэдэг бол нэгж тойрог дээрх тухайн өнцөгт харгалзах цэгийн ординат байдаг. Өөрөөр хэлбэл цэгийн OY тэнхлэг дээрх координат юм.  
Эдгээр тодорхойлолтыг тригнометрийн энгийн тэгшитгэлүүдийг бодоход хэрхэн ашиглахыг энэ хичээлээр авч үзье.

  Нээгдсэн тоо: 5609 Бүртгүүлэх

Олонлогийг латин цагаан толгойн том, элементийг жижиг үсгээр нь тэмдэглэдэг. энэ бичлэг нь a нь R олонлогийн элемент ба энэ олонлогт харьяалагдана гэснийг илэрхийлнэ. Эсрэгээр a нь R олонлогт харьяалагдахгүй гэдгийг гэж бичнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг эсрэгээрээ B олонлогийн элемент бүр нь A олонлогт харьяалагддаг байвал эдгээрийг тэнцүү олонлогууд (A=B) гэнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг бол A олонлог нь B олонлогт багтсан эсвэл A олонлог нь B олонлогийн дэд олонлог гэж хэлдэг. /Зур. 1/ Энэ тохиолдлыг гэж бичнэ. Дурын A олонлогийн хувьд багтаалт хүчинтэй.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 103

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 168

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 136

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 257

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 287

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 303

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 359

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 346

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 428

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 561

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 1016

 

Хоёр тамирчин тойрог замаар нэгэн зэрэг гарч 3,2 км замыг туулан барианд оржээ. Тойргийг нэг тамирчин нөгөөгөөсөө 10 секундээр хурдан тойрдог. Ялагч барианд орж байхад нөгөө нь бүтэн тойрог гүйх үлдсэн байлаа. Ялагч замыг 9 мин 20 секундэд туулсан бол тойрог замын уртыг ол. Тамирчдын хурдыг тогтмол гэж үзнэ.

Нээгдсэн тоо : 518