Гурвалжны биссектрисийн чанар

Хичээлд хавтгайн геометрийн бодлого бодоход чухал хэрэгтэй гурвалжны биссектрисийн нэгэн чанарыг авч үзье. ABC гурвалжны B оройгоос түүний эсрэг орших AC тал дээрх D цэгт биссектрисийг буулгая.

BD хэрчим нь ABC гурвалжны B оройгоос буулгасан биссектрис.
Гурвалжны биссектрис эсрэг орших талыг харгалзах хажуу талуудын харьцаатай тэнцүү харьцаатай хэрчмүүдэд хуваадаг. Өөрөөр хэлбэл гэсэн үг.

Баталгаа.

Гурвалжны оройн өнцгийг хуваасан хэрчмийг биссектрис гэдгийг Гурвалжин хичээлээс мэднэ. Тэгэхлээр байна гэсэн үг. Цааш биссектрисээр хуваагдсан ABD, BDC гурвалжингуудын талбайн харьцааг олцгооё. Үүнийг гурвалжны хоёр тал тэдгээрийн хоорондох өнцгөөр талбайг олдог томьёогоор олбол байх бөгөөд харьцааг олбол гэж гарна.
Нөгөө талаас гурвалжны B оройгоос AC талд BH өндөрийг буулгаад гурвалжны талбайг нэг тал өндрөөр олдог томьёогоор ABD, BDC гурвалжингуудын талбайг олбол гэж гарах ба талбайг харьцуулбал гэж гарна. Хоёр аргаар олсон талбайн харьцаануудаас гэж гарснаар чанар батлагдана.

Биссектрисийн урт

ABC гурвалжны A оройгоос татсан биссектрисийн урт гурвалжны A оройн өнцгийг үүсгэх хоёр талын уртын үржвэрээс A оройн эсрэг тал биссектрисээр хуваагдах хоёр хэрчмийн уртын үржвэрийг хасаад язгуур авсантай тэнцүү гэдэг биссектрисийн чухал теорем байдаг.

Баталгаа.

Теоремийн баталгааг ЕБС-д хийгээд байх нь ховор ч теоремийг илүү сайн ойлгох, геометрийн байгуулалт, бодлого бодох аргачлалыг эзэмшихэд теоремийн баталгаа чухал ач холбогдолтой. Иймээс теоремийн баталгааг хийе.
Баталгааны бүрэн зургийг өгсөн тул өөрсдөө зургийг гаргаад яваарай.
Теоремийн үгээр тодорхойлсонг ойлгоход зарим үед хүнд байх тал бий. Иймээс ABC гурвалжин байгуулаад A оройгоос биссектрисийг татахад BC талыг D цэгт огтолсон гэж үзээд түүний уртыг |AD|=l гэе. A оройн өнцгийг үүсгэх хоёр талын уртыг a, b харин BC талыг биссектрис D цэгт огтлон үүсгэх хэрямүүдийн уртыг c, d гэе. Тэгвэл теоремоор гэдгийг батлая.
Теоремийг батлахын тулд ABC гурвалжинг багтаасан тойргийг татаад AD биссектрисийг тойрогтой огтлолцох хүртэл үргэлжлүүлэн огтлолын цэгийг E гээр тэмдэглээд C оройтой холбосон EC хэрчмийг татъя.
AD биссектрис тул гэдгээс гадна BE нумд BAE ба BCE өнцгүүд тулж байгаа учраас байна. Тэнцүү өнцгүүдийг зурагт ижил тэмдэгүүдээр тэмдэглэе. Үүнээс гадна AC нумд ABC ба AEC өнцгүүд тулж байгаа учраас харин D цэгт оройтой босоо өнцгүүд бас хоорондоо тэнцүү гэдгийг Хамар болон босоо өнцгүүд хичээлээс мэднэ. Ингэснээр хоёр өнцөг тэнцүү шинжээр төстэй гурвалжингууд бий болсон.

Гурвалжин төстэй байх шинжүүд хичээлийг үзээрэй. Эндээс төстэй талуудын порпорционал харьцааг бичвэл болох бөгөөд утгуудыг тавибал болно. Дараагийн төстэй хос гурвалжингуудаас ба утгуудыг тавивал болно. AE=AD+DE тул l=AE-DE гэж бичиж болно. AE, DE утгуудыг тавивал

гарснаар теорем батлагдсан.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3350 Төлбөртэй

хэлбэрийн тэгшитгэлийн системийг хоёр үл мэдэгдэгчтэй хоёр шугаман тэгшитгэлийн систем гэнэ.Энд a, b, c, d, e, f нь өгөгдссөн тоонууд. x, y нь үл мэдэгдэгчид. a, b, c, d тоонууд нь үл мэдэгдэгчдийн коэффициентүүд, e, f сул гишүүд. Ийм тэгшитгэлийн системийг үндсэн хоёр аргаар боддог.

Орлуулах арга

  1. Аль нэг тэгшитгэлээс аль нэг үл мэдэгдэгчийг жишээлбэл x-г нөгөө үл мэдэгдэгч y болон коэффициентүүдээр илэрхийлнэ. x=(c-by)/a [ 2 ]
  2. Хоёрдугаар тэгшитгэлд x -ийг орлуулж бичнэ. d(c-by)/a+ey=f
  3. Сүүлчийн тэгшитгэлээс y-г олно. y=(af-cd)/(ae-bd)
  4. y-ийн утгыг [ 2 ] илэрхийлэлд орлуулна. x=(ce-bf)/(ae-bd)

  Нээгдсэн тоо: 9025 Нийтийн

Хүмүүс математикийг зөвхөн тоотой холбон ойлгодогоос тоо бодлого, тооны хичээл гэж ч ярьж байдаг. Гэтэл тоо бодох нь зөвхөн математикт ч биш бүхий л хичээлд байдаг шүү дээ. Жишээ нь хими, фикик, түүх, газарзүй гэх мэтээр. Тэгэхээр бусад хичээлийн бодлого, тооцоонууд математикийн тооцоо биш болж таарах уу. Мэдээж үгүй бүхий л тооцоо, бодлогод математикийн ухаанд мөрддөг дүрмийг л ашиглана. Математик хүмүүст тоо бодох гэхээсээ илүү хийсвэрлэн сэтгэх, тунгаан бодох, ухан ойлгох чадварыг өгдөг. Иймээс л математикийн ухааныг бүх ухааны хаан гээд байгаа юм. Математикийн бүх зүйлүүд бие биетэйгээ нягт холбоотой, нэг нь нөгөөгөөс урган гардаг учраас буруу, худлаа зүйл байж болдоггүй нь түүнийг нэг талаас амархан нөгөө талаас хүнд хичээл болгодог.

  Нээгдсэн тоо: 9188 Төлбөртэй

Үржвэрт задлах

Олон гишүүнт бүр нь үржвэрт задардаггүй. Гэхдээ үржвэрт задлах боломжтой хэдэн тохиолдол байдаг.

  • Олон гишүүнтийн бүх гишүүд нь ижил үржигдхүүнийг агуулж байвал түүнийг хаалтны гадна гаргаж болно.
  • Олон гишүүнтийн гишүүдийг хэсэгчлэн хаалтанд аваад эндээс хаалт бүрд ерөнхий илэрхийлэл олж энэ илэрхийллийг ерөнхий үржигдхүүн байдлаар хаалтаас гаргахад хаалтанд үлдсэн хэсэг нь ерөнхий үржигдхүүн байдалд орж болно. Тэгвэл энэ илэрхийллийг хаалтаас гаргах замаар олон гишүүнтийг үржвэр болгон задална. Жишээ

  • Олон гишүүнтийг үржвэрт задлахдаа хааяа харилцан устгагдах гишүүдийг нэмэх аргыг хэрэглэнэ.Жишээ

  • Үржүүлэхийн хураангуй томьёог ашиглана.

  Нээгдсэн тоо: 8386 Төлбөртэй

Тригнометрийг ойлгох хамгийн энгийн арга бол нэгж тойрог юм. Нэгж тойргийг ойлгосон байхад тригнометрийн хувиргалт, тэшитгэлийг бодоход ашигладаг олон томьёог орлох боломжтой. Зургийг харцгаая.

Зургаас бид юуг харах боломжтой вэ?

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 292

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 369

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 338

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 432

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 481

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 505

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 599

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 690

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 726

 
Энэ долоо хоногт

a ба b катеттай тэгш өнцөгт гурвалжин ерөнхий тэгш өнцөгтэй квадратыг багтаасан бол квадратын периметрийг ол.

Нээгдсэн тоо : 1132

 

функцийн графикийн (0,-1) цэгт татсан шүргэгч шулуун ба координатын тэнхлэгүүдээр хашигдсан мужийн талбайг ол.

Нээгдсэн тоо : 747

 

тэнцэтгэл бишийн хамгийн их бүхэл шийдийг ол.

Нээгдсэн тоо : 819