Порпорц

Порпорц

Порпорц гэдэг нь хоёр харьцааны тэнцэл юм.

порпорцоос ad=bc / диагнолд байрлах гишүүдийн үржвэр тэнцүү / гарна. Мөн түүнчлэн ad=bc тэнцлээс дараах порпорцууд гарна.

Эдгээр болон бусад порпорцыг анхны порпорцоос дараах дүрмээр гарган авна.

  • Порпорцын диагнолд байрлах гишүүдийн байрыг сольж болно.
  • Порпорцийн харьцааг эсрэгээр сольж болно.

Үүсмэл порпорц.

Хэрвээ бол анхны порпорцоос гарсан дараах үүсмэл порпорцууд байж болно.

Эдгээр болон бусад порпорцыг үндсэн хоёр томьёогоор нэгтгэж болно.

Энд m, n, k, l нь дурын тоонууд.

Жишээ
Хэрвээ m = n = k =1, l=0 бол гарна.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3952 Төлбөртэй

Тригнометрийн хувиргалт, тэгшитгэл, тэнцэтгэл биш гээд тригнометрийн бодлогод хувиргалтын томьёонуудыг өргөнөөр ашигладаг. Эдгээр томьёонууд нилээд олон тооны дээр өөр хоорондоо их төстэй байдаг нь сурагчдыг төөрөгдөлд оруулах явдал ихээр гардаг. Томьёонуудыг цээжилнэ гэвэл нилээд хэцүү тэгээд ч алдах нь гарцаагүй. Энэ хичээлээр хувиргалтын томьёог цээжлэхгүйгээр хэрхэн зөв гаргах талаар авч үзэх болно. Сайн анхааралтай уншаад аргачлалыг тогтоон аваарай.
Хувиргалтын томьёонуудын талаар ярилцахаас өмнө зарим нэгэн ухагдхууны талаар тохиролцох хэрэгтэй. Тэгэхлээр f(x) - гэдгийг sinx, cosx, tgx, ctgx функцуудын аль нэг нь гэе. cof(x) -ээр f(x) функцын кофункцыг тэмдэглэе. Кофункц гэдэг нь синусын хувьд косинус, косинусын хувьд синус харин тангенсийн хувьд котангенс, котангенсийн хувьд тангенс гэсэн үг юм. Илүү ойлгомжтойгоор

  Нээгдсэн тоо: 7137 Төлбөртэй

Олон өнцөгт хавтгайн хэсгүүдээс бүрдсэн биетийг олон талт гэнэ. Эдгээр олон өнцөгтийг талууд, тэдгээрийн талуудыг ирмэгүүд, оройнуудыг нь олон талтын оройнууд гэнэ. Хоёр оройг холбосон нэг тал дээр оршдоггүй хэрчмийг олон талтын диагнал гэдэг. Бүх диагнал нь олон талт дотроо байдаг биетийг гүдгэр олон талт гэнэ.

Призм

Призм гэдэг нь /Зур. 79/ хоёр тал  нь ( призмийн суурь) ABCDEF ба abcdef гэсэн паралел ижил олон өнцөгт , бусад талууд нь шулуунуудтай паралел паралелграм хавтгайнуудаас бүрдсэн олон талт юм. паралелграмуудыг хажуу талууд шулуунуудыг хажуу ирмэгүүд гэдэг. Нэг сууриас нөгөө суурьт буулгасан дурын перпендикуляр нь призмийн өндөр болно.

  Нээгдсэн тоо: 8497 Нийтийн

Математикийн бодлого бодох яагаад хүнд байдаг вэ? гэвэл энд бүх зүйлийг ямар нэгэн алдаа гаргахгүй хийх хэрэгтэй болдог. Алдаа гаргавал тэр дороо алдаа гэж мэдэгдэхгүй та зүгээр л өөр бодлого бодох ажиллагаанд шилжээд явдаг. Тэгвэл бодлого биш жишээ нь гадаад хэл, уран зохиол, нийгмийн чиглэлийн асуудлыг буруу зөрүү явсан байсан ч зөв замдаа шууд ороод шийдэх боломжтой. Харин бодлого бодоход ийм зүйл байхгүй. Алдаа л хийсэн бол буруу зам руу орно. Үүнийгээ мэдэхгүй бол алдаа болно мэдвэл бараг эхнээс нь шалгах хэрэгтэй болно.

  Нээгдсэн тоо: 121 Бүртгүүлэх

Нийлбэр хоёроос дээш бүрдүүлэгч буюу нэмэгдхүүнүүүдтэй бол тооцоог хялбар  болгох үүднээс тэдгээрийг бүлэглэх аргыг өргөнөөр ашигладаг. Энэ нь нэмэх үйлдлийн байр солих, нэгтгэн нэмэх дүрмүүдийг хослуулан хэрэглэж байгаа аргачлал болохоос шинэ дүрэм биш.
Бүрдүүлэгчдийг бүлэглэнэ гэдэг нь тэдгээрийг хаалт ашиглан нэгтгэх аргачлал юм. Аргачлалыг нийлбэрийн тооцоог энгийн болгох зорилгоор ашигладаг тул нэмэгдхүүнүүдийн байрлал голлон өөрчлөгдөнө.

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 9

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 19

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 17

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 28

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 28

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 28

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 26

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 39

 

react програмд олон хуудас үүсгэн удирдахын тулд react -ийн бүрэлдхүүнд ордоггүй ч түүнтэй нягт холбоотой ажилладаг нэмэлт пакетийг…

Нээгдсэн тоо : 44

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2767

 

илэрхийллийн a=36,7 тэнцүү байх утгыг ол.

Нээгдсэн тоо : 660

 

a ба b нь 3x2-x-1=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 693