Тригнометрийн тэгшитгэл

Тригнометрийн тэгшитгэлүүдийг бодох томьёонууд.

төрлийн тэгшитгэлүүдийг тригнометрийн энгийн тэгшитгэл гэдэг. Эдгээр тэгшитгэлүүдийг бодох томьёонууд :

Тайлбарn - бүхэл тоо,

Дугаар Томьёо
8.1.1
8.1.2
8.1.3
8.1.4

a=0, a=1, a=-1 байх тухайн тохиолдлуудад дараах томьёонууд хүчинтэй.

Дугаар Томьёо
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8

энд
төрлийн тэгшитгэлүүд нь тригнометрийн энгийн тэгшитгэлүүдэд бас хамаарагдана. Эдгээрийг бодоходоо г x  ээр орлуулаад 8.1.1-8.1.4 томьёонуудыг хэрэглэнэ.

1, 2, 3 эдгээрийг тригнометрийн түгээмэл хэв шинжит тэгшитгэлүүд гэдэг.

d≠0 үед нь түгээмэл хэв шинжит тэгшитгэлд орохгүй. Гэхдээ ийм тэгшитгэлийг d тоог гэсэн ижил тэнцлээр сольж 2-р хэлбэрийн тэгшитгэлд хувиргаж болдог.

  • a≠0 байхад 1, 2, 3 тэгшитгэлүүдийг бодохдоо coskx=0 байлгах x ийн утгыг авч үзнэ. Тэгвэл x ийн  coskx=0 байлгах утганд sinkx=0 байх ёстой гэдэг нь тэгшитгэл бүрээс гарах бөгөөд энэ нь боломжгүй юм. Тэгэхлээр эдгээр тэгшитгэлүүд нь зөвхөн coskx≠0 байлгах x ийн утганд бодолттой байна. Иймээс a≠0 байхад тэгшитгэлүүдийн хоёр талыг 1.cosx -д, 2.cos2x -д, 3.cos3x -д хуваавал шийдийн алдагдал гарахгүй. Хуваалтын үр дүнд tgkx тэй алгебрын тэгшитгэл гарах бөгөөд tgkx=z орлуулга хийх замаар бодно.
  • a=0 байхад coskx=0 байлгах x ийн утгыг алдагдахад хүргэх учраас 1, 2, 3 тэгшитгэлүүдийг coskx д хувааж болохгүй. a=0 байхад 1 тэгшитгэл нь энгийн тэгшитгэл болно. Харин 2, 3-р тэгшитгэлүүдийг үржигдхүүнд задалж боддог.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 10343 Нийтийн

Томьёоны бичлэгт ашигласан тэмдэглэгээнүүд.

  Нээгдсэн тоо: 17278 Нийтийн

Прогрессын бодлогуудыг бодоход ашиглах үндсэн томьёонууд.

  Нээгдсэн тоо: 15564 Нийтийн

Зэрэгт функц, Илтгэгч функц, Логарифм функц, Тригнометрийн функцууд, Тригнометрийн урвуу функцууд, Тодорхойлогдох муж.

(N - натурал тоо, Z - бүхэл тоо, D(y) - тодорхойлогдох муж, E(y) - утгын муж, T - үе)

  Нээгдсэн тоо: 7364 Нийтийн

Вектор

m, n - тоонууд, α - хоёр векторын хоорондын өнцөг, - векторууд, - векторуудын скаляр үржвэр, |a| - векторын урт

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 150

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 196

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124