Бутархайг хураах нь

Математикийн бодлого бодох яагаад хүнд байдаг вэ? гэвэл энд бүх зүйлийг ямар нэгэн алдаа гаргахгүй хийх хэрэгтэй болдог. Алдаа гаргавал тэр дороо алдаа гэж мэдэгдэхгүй та зүгээр л өөр бодлого бодох ажиллагаанд шилжээд явдаг. Тэгвэл бодлого биш жишээ нь гадаад хэл, уран зохиол, нийгмийн чиглэлийн асуудлыг буруу зөрүү явсан байсан ч зөв замдаа шууд ороод шийдэх боломжтой. Харин бодлого бодоход ийм зүйл байхгүй. Алдаа л хийсэн бол буруу зам руу орно. Үүнийгээ мэдэхгүй бол алдаа болно мэдвэл бараг эхнээс нь шалгах хэрэгтэй болно.

Иймд үйлдлүүдийг хийх ажиллагааг сайн эзэмшсэн байвал зохино. Математикийн нэмэх, хасах, хуваах, үржих үндсэн үйлдлүүдийг сурагчид сайн эзэмшсэн байдаг боловч эдгээр үйлдлүүдийг бутархай дээр ялангуяа хураах ажиллагаанд ашиглахдаа алдааг ихээр гаргадаг. Энэ хичээлээр бид бутархайг хураахдаа гаргадаг алдаануудыг жишээн дээр авч үзэцгээе.

Бодлого.
Гөлөг өдөрт 200 грамм хоол иддэг байжээ. 14 хоногийн дараа тэр өссөн тул өдөрт 20% илүү хоол идэх болжээ. Одоо гөлөг хичнээн грамм хоол иддэг болсон бэ?

Буруу бодолт. Хувь тооцох энэхүү бодлого нь гэсэн тэгшитгэлийг бодоход шилжинэ. Их олон сурагчид бутархайн хүртвэр болон хуваарт байгаа 100-г хураан гэж бодон алдаа хийдэг. Гарсан хариулт мэдээж буруу. 200 грамм хоол идэж байсан гөлөг 4200 граммыг иддэг болсон гэдэг нь 20 хувиар биш 21 дахин их болсон гэсэн үг. Бутархайн хүртвэр хуваарт ижилхэн тоо, илэрхийлэл харагдах л юм бол хураах гээд байж болохгүй. Ийм алдаанд орохгүйн тулд доорх дүрмийг цээжлэн тогтоож аваарай.

Үржигдхүүнүүдийг л зөвхөн хурааж болно. Ялгавар, нийлбэртэй бол хурааж болохгүй.  

Дээрх бодлогын зөв бодолт байх болно. Бутархайн хүртвэр хуваарт зөвхөн үржигдхүүнүүд л байгаа тул хураах бүрэн боломжтой. Ямар ч нэмэх, хасах тэмгүүд байхгүй.

Дахин нэг жишээ авъя.
илэрхийллийг хялбарчил. Энд 2 ба 8 -ыг шууд гэж хураан алдаа ихээр гаргадаг. Ингээд эхэлсэн бол цаашаа мэдээж буруу хариу гаргана. Энд бидний дассан зүйл алдаа гаргах үндэс болдог. Илэрхийлэлд үржүүлэхийн тэмдгийг шаардлагагүй тохиолдолд бичдэггүй. Жишээ 2x, 15xy гэх мэтээр. Гэтэл дээрх дүрмийг сайн мэддэг сурагчид хүртэл энд үржих тэмдэг байгаа гэж үзээд шууд хурааж орхидог. Гэтэл энд үржих тэмдэг биш нэмэх тэмдэг байгаа. Бутархайн бичилт нэгэнт ийм хойно бид өөрсдөө л үүнийг ойлгох хэрэгтэй. Харахад хураахад буруу зүйлгүй мэт. Гэвч энэ бичлэгийг ойлгохдоо гэж харах ёстой. Аравтын бутархайн хувьд бүхэл хэсэг бутархай хэсгийг таслалаар заагласан байдаг тул амар. Харин энгийн бутархайн бичлэгийн энэ хэлбэрийг зөв ойлгох хэрэгтэй. Хэрвээ илэрхийлэлд гэж өгөгдсөн бол хураахад буруу болохгүй. Учир нь энд бүгд үржигдхүүнүүд байгаа биз дээ.

Асуудал үүсгэдэг бас зүйл бол порпорц байдаг. Ялангуяа хувьсагч хоёр талдаа байрласан үе.

Жишээ нь тэгшитгэлийг бод.
Буруу бодолт. Зарим сурагчид тэгшитгэлийн хоёр талыг m -д хураан хэзээ ч тэнцэхгүй илэрхийлэл гарган ирдэг.
Зөв бодолт. Энэ бол ердийн шугаман тэгшитгэл. Тэгшитгэлийн бүх гишүүдийг тэнцүүгийн тэмдэгийн нэг талд гараад эсхүл порпорцийн чанарыг ашиглаад бодсон ч болно.
Та эхний бодолтонд ямар алдаа байгаа юм гэж асууж болно. Үүнийг тайлбарлахын тулд тэгшитгэлтэй ажиллах

Ямарч тэгшитгэлийг тэгээс ялгаатай дурын тоонд үржүүлж хувааж болно.

дүрмийг саная. Хэрэгтэй дүрэм тул тогтоон аварай. Зөвхөн тэгээс ялгаатай тоонд л хувааж болно. Манай тохиолдолд зөвхөн m≠0 үед л тэгшитгэлийг m -д хувааж болно. Хэрвээ m=0 бол яах вэ? Утгыг тэгшитгэлд тавиад шалгавал зөв тэнцэл гарах тул m=0 бол шийд. Харин m≠0 бусад тохиолдолд гэсэн буруу илэрхийлэл гарна.

Дээрх алдаануудаас дүгнэвэл

  1. Үржигдхүүнүүдийг л зөвхөн хураана. Нийлбэр, ялгаварыг болохгүй. Иймээс хүртвэр, хуваарийг үржигдхүүнд задлаж сурах хэрэгтэй.
  2. Порпорцийн захын гишүүдийн үржвэр дундах гишүүдийн үржвэртэй тэнцүү. Порпорцийн үндсэн чанар
  3. Тэгшитгэлийг зөвхөн тэгээс ялгаатай k тоогоор үржүүлж эсхүл хувааж болно. k=0 тохиолдолыг тусд нь шалгах хэрэгтэй.

гэсэн гурван дүрмийг тогтоон аваарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1931 Төлбөртэй

Алгебрын суурь ухагдхууны нэг бол илэрхийллийг хялбарчлах байдаг. Өмнөх хичээлээр рационал бутархай гэж юу болох тэдгээрийг хялбарчилахад үржүүлэхийн хураангуй томьёог хэрхэн ашиглахыг сайн ойлгоогүй бол Рационал бутархайтай ажиллаж сурах I хичээлийг үзэхийг зөвлөе. Бодлого бодох суурь аргачлал илэрхийллийн хялбарчлал дээр тогтдог. Үүнийг сайн эзэмшээгүй үед ямарч бодлого танд хүндрэл үүсгэх бүрэн боломжтой. Иймээс хичээлийг анхааралтай сайн судлан ойлгон авахыг хичээгээрэй.

Нэг үзээд ойлгохгүй бол дахиад үз. Хэн ч таныг олон удаа үзлээ гэхгүй. Интернет сургалтын хамгийн том давуу тал энэ. Зарим хичээлийг үзэхийн тулд багахан төлбөр төлөх хэрэгтэйг Бүртгүүлэх, тусгай эрх нээлгэх нийтлэлээс үзээрэй.

  Нээгдсэн тоо: 3617 Нийтийн

Шугам гэдэг нь бие биетэйгээ дараалан байрласан цэгүүдийн олонлогоор үүсэх геометрийн дүрс.
Ямар ч шугамыг тодорхой замаар шилжиж буй цэгийн хөдөлгөөний мөр гэж үзэж болно. Жишээ нь цаасан дээр харандаагаар дарвал түүний бал цаасан дээр цэг буюу мөрийг үүсгэнэ. Харандааг цааш цаасан дээгүүр хөдөлгөвөл хөдөлгөөний замаар бал бие биетэйгээ дараалан байрлах цэгүүдийн олонлогийг үүсгэснээр шугам зурагдана.
Геометрийн шугамд өргөн гэсэн ойлголт байдаггүй гэдгийг тогтоон аваарай.

  Нээгдсэн тоо: 3416 Төлбөртэй

Өнцөг

Огтлолцсон хоёр шулууны хоорондох өнцгийг хавтгайн геометрийн адилаар хэмжинэ. Учир нь эдгээр шулууныг дайруулан хавтгай татаж болдог. Паралел хоёр шулууны хоорондын өнцөг нь 0 эсвэл . Зөрсөн AB ба CD /Зур. 70/ хоёр шулууны хоорондын өнцгийг дараах байдлаар тодорхойлно.
Дурын O цэгийг дайруулаад OM || AB ба ON || CD байх OM, ON цацрагийг татна. Тэгвэл AB ба CD гийн хоорондох өнцөг нь NOM тэй тэнцүү гэж үзнэ. Өөр хэлбэл AB ба CD шулууныг өөртөө нь паралел байдлаар огтлолцох хүртэл нь шилжүүлнэ гэсэн үг. Тухайлбал O цэгийг AB ба CD шулуунуудын аль нэг дээр авч болно. Энэ тохиолдолд O цэг нь хөдөлгөөнгүй байна.

  Нээгдсэн тоо: 620 Төлбөртэй

Алгебрт эерэг, сөрөг тоонууд гэсэн ухагдхуун орж ирснээр үржих хуваах үйлдэлд тэмдгийг тодорхойлохын тулд арай өөр дүрмийг ашигладаг. Үржих, хуваах үйлдлийн тухайд өөрчлөлт байхгүй ч тэмдгийг тодорхойлох аргачлал эхлээд сурагчдад хүндрэл үүсгэх талтай. Гэхдээ хичээлийг үзэн багахан дадлага хийхэд бүх зүйл энгийн гэдгийг ойлгоно.

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 9

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 18

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 17

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 28

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 28

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 28

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 26

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 39

 

react програмд олон хуудас үүсгэн удирдахын тулд react -ийн бүрэлдхүүнд ордоггүй ч түүнтэй нягт холбоотой ажилладаг нэмэлт пакетийг…

Нээгдсэн тоо : 44

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2767

 

илэрхийллийн a=36,7 тэнцүү байх утгыг ол.

Нээгдсэн тоо : 660

 

a ба b нь 3x2-x-1=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 693