Бутархайг хураах нь

Математикийн бодлого бодох яагаад хүнд байдаг вэ? гэвэл энд бүх зүйлийг ямар нэгэн алдаа гаргахгүй хийх хэрэгтэй болдог. Алдаа гаргавал тэр дороо алдаа гэж мэдэгдэхгүй та зүгээр л өөр бодлого бодох ажиллагаанд шилжээд явдаг. Тэгвэл бодлого биш жишээ нь гадаад хэл, уран зохиол, нийгмийн чиглэлийн асуудлыг буруу зөрүү явсан байсан ч зөв замдаа шууд ороод шийдэх боломжтой. Харин бодлого бодоход ийм зүйл байхгүй. Алдаа л хийсэн бол буруу зам руу орно. Үүнийгээ мэдэхгүй бол алдаа болно мэдвэл бараг эхнээс нь шалгах хэрэгтэй болно.

Иймд үйлдлүүдийг хийх ажиллагааг сайн эзэмшсэн байвал зохино. Математикийн нэмэх, хасах, хуваах, үржих үндсэн үйлдлүүдийг сурагчид сайн эзэмшсэн байдаг боловч эдгээр үйлдлүүдийг бутархай дээр ялангуяа хураах ажиллагаанд ашиглахдаа алдааг ихээр гаргадаг. Энэ хичээлээр бид бутархайг хураахдаа гаргадаг алдаануудыг жишээн дээр авч үзэцгээе.

Бодлого.
Гөлөг өдөрт 200 грамм хоол иддэг байжээ. 14 хоногийн дараа тэр өссөн тул өдөрт 20% илүү хоол идэх болжээ. Одоо гөлөг хичнээн грамм хоол иддэг болсон бэ?

Буруу бодолт. Хувь тооцох энэхүү бодлого нь гэсэн тэгшитгэлийг бодоход шилжинэ. Их олон сурагчид бутархайн хүртвэр болон хуваарт байгаа 100-г хураан гэж бодон алдаа хийдэг. Гарсан хариулт мэдээж буруу. 200 грамм хоол идэж байсан гөлөг 4200 граммыг иддэг болсон гэдэг нь 20 хувиар биш 21 дахин их болсон гэсэн үг. Бутархайн хүртвэр хуваарт ижилхэн тоо, илэрхийлэл харагдах л юм бол хураах гээд байж болохгүй. Ийм алдаанд орохгүйн тулд доорх дүрмийг цээжлэн тогтоож аваарай.

Үржигдхүүнүүдийг л зөвхөн хурааж болно. Ялгавар, нийлбэртэй бол хурааж болохгүй.  

Дээрх бодлогын зөв бодолт байх болно. Бутархайн хүртвэр хуваарт зөвхөн үржигдхүүнүүд л байгаа тул хураах бүрэн боломжтой. Ямар ч нэмэх, хасах тэмгүүд байхгүй.

Дахин нэг жишээ авъя.
илэрхийллийг хялбарчил. Энд 2 ба 8 -ыг шууд гэж хураан алдаа ихээр гаргадаг. Ингээд эхэлсэн бол цаашаа мэдээж буруу хариу гаргана. Энд бидний дассан зүйл алдаа гаргах үндэс болдог. Илэрхийлэлд үржүүлэхийн тэмдгийг шаардлагагүй тохиолдолд бичдэггүй. Жишээ 2x, 15xy гэх мэтээр. Гэтэл дээрх дүрмийг сайн мэддэг сурагчид хүртэл энд үржих тэмдэг байгаа гэж үзээд шууд хурааж орхидог. Гэтэл энд үржих тэмдэг биш нэмэх тэмдэг байгаа. Бутархайн бичилт нэгэнт ийм хойно бид өөрсдөө л үүнийг ойлгох хэрэгтэй. Харахад хураахад буруу зүйлгүй мэт. Гэвч энэ бичлэгийг ойлгохдоо гэж харах ёстой. Аравтын бутархайн хувьд бүхэл хэсэг бутархай хэсгийг таслалаар заагласан байдаг тул амар. Харин энгийн бутархайн бичлэгийн энэ хэлбэрийг зөв ойлгох хэрэгтэй. Хэрвээ илэрхийлэлд гэж өгөгдсөн бол хураахад буруу болохгүй. Учир нь энд бүгд үржигдхүүнүүд байгаа биз дээ.

Асуудал үүсгэдэг бас зүйл бол порпорц байдаг. Ялангуяа хувьсагч хоёр талдаа байрласан үе.

Жишээ нь тэгшитгэлийг бод.
Буруу бодолт. Зарим сурагчид тэгшитгэлийн хоёр талыг m -д хураан хэзээ ч тэнцэхгүй илэрхийлэл гарган ирдэг.
Зөв бодолт. Энэ бол ердийн шугаман тэгшитгэл. Тэгшитгэлийн бүх гишүүдийг тэнцүүгийн тэмдэгийн нэг талд гараад эсхүл порпорцийн чанарыг ашиглаад бодсон ч болно.
Та эхний бодолтонд ямар алдаа байгаа юм гэж асууж болно. Үүнийг тайлбарлахын тулд тэгшитгэлтэй ажиллах

Ямарч тэгшитгэлийг тэгээс ялгаатай дурын тоонд үржүүлж хувааж болно.

дүрмийг саная. Хэрэгтэй дүрэм тул тогтоон аварай. Зөвхөн тэгээс ялгаатай тоонд л хувааж болно. Манай тохиолдолд зөвхөн m≠0 үед л тэгшитгэлийг m -д хувааж болно. Хэрвээ m=0 бол яах вэ? Утгыг тэгшитгэлд тавиад шалгавал зөв тэнцэл гарах тул m=0 бол шийд. Харин m≠0 бусад тохиолдолд гэсэн буруу илэрхийлэл гарна.

Дээрх алдаануудаас дүгнэвэл

  1. Үржигдхүүнүүдийг л зөвхөн хураана. Нийлбэр, ялгаварыг болохгүй. Иймээс хүртвэр, хуваарийг үржигдхүүнд задлаж сурах хэрэгтэй.
  2. Порпорцийн захын гишүүдийн үржвэр дундах гишүүдийн үржвэртэй тэнцүү. Порпорцийн үндсэн чанар
  3. Тэгшитгэлийг зөвхөн тэгээс ялгаатай k тоогоор үржүүлж эсхүл хувааж болно. k=0 тохиолдолыг тусд нь шалгах хэрэгтэй.

гэсэн гурван дүрмийг тогтоон аваарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2093 Бүртгүүлэх

Арксинус, арккосинус, арктангенс, арккотангенс гэдэг ойлголтоос сурагчид нилээд айдаг. Эдгээр ухагдхууныг сайтар ойлгоогүйн улмаас түүнийг ашиглах, тэдгээртэй холбогдолтой бодлого бодохоос зайлсхийдэг. Өөрөөр хэлбэл айнаа л гэсэн үг. Гэхдээ эдгээр нь ойлгосон хүндээ тригнометрийн тэгшитгэлийг бодоход асар тус болдог энгийн л ойлголтууд гэдгийг та энэ хичээлийн эцэст мэдэн авах болно.
Синус, косинус, тангенс, котангенс талаар мэдэж байхад илүүдэхгүй. Тэдгээрийн зарим өнцгүүдийн утгууд гээд хамгийн ерөнхий зүйлийг мэдэж байхад асуудал үүсэхгүй ойлгоно.

  Нээгдсэн тоо: 2689 Төлбөртэй

Тогтмол ба хувьсагч

Математикт тогтмол ба хувьсах утгагууд гэж байдаг. Хувьсах утга нь бодлогын нөхцлөөс хамаарч өөрчлөгдөж байдаг бол тогтмол утга нь өөрчлөгддөггүй. Нэг ижил утга нь нэг бодлогод тогтмол, өөр бодлогод хувьсах байж болдог.
Жишээлбэл : Дэлхийн нэг өргөрөгт чөлөөт уналтын хурдатгал нь тогтмол байдаг боловч өргөрөгөөс хамаарч өөрчлөгдөж байдаг. Өөрөөр хэлбэл хувьсдаг утга юм.
Хувьсагчдыг голдуу латин цагаан толгойн сүүлчийн x, y, z, … харин тогтмол утгуудыг эхний  a, b, c, … үсгүүдээр тэмдэглэдэг.

  Нээгдсэн тоо: 1854 Төлбөртэй

Хавтгайн геометрийн дүрсүүдээс сурагчид хамгийн хэцүү, ойлгомжгүй, асуудал үүсгэдэг дүрс бол тойрог. Гурвалжин, тэгш өнцөгт, квадрат, ромбо, трапец гэх мэт дүрсүүдийн тухайд сурагчид арай илүү ойлгосон байдаг. Хичээлээр тойргийн элементүүдийн талаар ойлголт өгөхийг хичээе.

  Нээгдсэн тоо: 386 Төлбөртэй

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд гаргадаг.

Жишээ нь 8 ба 8-1 эсхүл 8 ба 1/8 бол харилцан урвуу тоонууд. Хоёрдахь бичилт өөр хэлбэрээр бичснээс бас л урвуу тоонууд. Урвуу тоонуудыг үржүүлэхэд нэг гардаг. Жишээ нь 8 · 8-1 = 8 · 1/8 = 8/8 = 1

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 128

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 190

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 158

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 284

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 313

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 320

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 385

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 386

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 461

 
Энэ долоо хоногт

Нээгдсэн тоо : 746

 

Аяга, стакан, ваар, лаазанд сүү, ундаа, квас, ус байжээ. Аяганд ус, сүү байхгүй, ундаатай сав ваар болон квастай савны дунд, лаазанд ундаа, усны аль нь ч байхгүй, стакан лааз ба сүүтэй савтай зэрэгцэн байрласан бол ямар саванд ямар шингэнийг хийсэн бэ.

Жич: Маш сонирхолтой гоё бодлого. Оролдоод үзээрэй.

Нээгдсэн тоо : 1074

 

илэрхийллийн хялбарчил.

Нээгдсэн тоо : 325