Ангилалын бүрдүүлэгчид

Ямарч натурал тоог ангилалын бүрдүүлэгчдийн нийлбэр хэлбэрээр илэрхийлж болно.
Үүнийг ойлгохын тулд 999 тоог аваад үзье. 999 тоо нь 9 зуут, 9 аравт, 9 нэгжээс бүрдэнэ.

Тэгвэл 999 = 9 зуут + 9 аравт + 9 нэгж = 900 + 90 + 9 гэсэн үг.

Дээрх бичлэгийн 900, 90, 9 бол оронгийн бүрдүүлэгчид.

Оронгийн бүрдүүлэгч гэдэг нь тухайн орон дахь нэгжийн тоо.
Оронгийн бүрдүүлэгчдийн нийлбэрийг 999 = 9 · 100 + 9 · 10 + 9 · 1 гэж бичиж болно.
Оронгийн бүрдүүлэгчийг үржүүлж буй (1, 10, 100, 1000 г.м) тоог оронгийн нэгж гэнэ.

Жишээ нь 1 - нэгжийн оронгийн нэгж, 10 - аравтын оронгийн нэгж, 100 - зуутын оронгийн нэгж гэх мэтээр.

Оронгийн нэгжээр үржүүлэгдэж буй тоог оронгийн нэгжийн тоо гэнэ.

Ямарч тооны 12 = 1 · 10 + 2 · 1 эсхүл 12 = 10 + 2 хэлбэрийн бичлэгийг тооны оронгийн бүрдүүлэгчдийн задаргаа эсхүл оронгийн бүрдүүлэгчдийн нийлбэр гэж нэрлэнэ.
Оронгийн бүрдүүлэгчдийн нийлбэр гэдэг нь олон оронтой тоог түүний оронгийн нэгжийн нийлбэр хэлбэрээр илэрхийлсэн бичлэг.

Жишээ

4587, 4056, 2500 тоонудыг оронгийн бүрдүүлэгчдийн нийлбэрээр бич.

Бодолт

4587 = 4 · 1000 + 5 · 100 + 8 · 10 + 7 · 1 = 4000 + 500 + 80 + 7;
4056 = 4 · 1000 + 0 · 100 + 5 · 10 + 6 · 1 = 4000 + 50 + 6;
2500 = 2 · 1000 + 5 · 100 + 0 · 10 + 0 · 1 = 2000 + 500.

Оронгийн бүрдүүлэгчдийн нийлбэрээр тоог задлан бичих тун амархан. Та зөвхөн тооны ангилал буюу хэд дэх орон ямар ангилалын ямар нэгжээр илэрхийлэгдэхийг мэдэж байхад хангалттай. Жишээ 4587 тооны хувьд 4 мянгат, 5 зуут, 8 аравт, 7 нэгж гэдгээс л нийлбэр үүсч байгаа юм.
Тоог бүрдүүлэгчдийн нийлбэрээр задлан бичихэд 1000, 100, 10 гэх мэтээр олон тэгийг бичихэд төвөгтэй байвал түүнийг 10 -ын зэргээр

4587 = 4 · 103 + 5 · 102 + 8 · 101 + 7 · 1 = 4000 + 500 + 80 + 7;
4056 = 4 · 103 + 0 · 102 + 5 · 101 + 6 · 1 = 4000 + 50 + 6;
2500 = 2 · 103 + 5 · 102 + 0 · 101 + 0 · 1 = 2000 + 500.

орлуулан бичиж болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2161 Төлбөртэй

Өмнөх хичээлүүдээр бид ерөнхий үржигдхүүнийг хаалтнаас гаргах, бүлэглэх гэсэн хоёр аргыг сурсан. Энэ удаа үржүүлэхийн хураангуй томьёог ашиглах хүчирхэг аргатай танилцах болно. Үүнийг сурагч бүр мэднэ. Томьёонуудыг ч сайн мэднэ гэж бодож байна. Тэгвэл энэ тухай ярих хэрэг байгаа юм уу гэсэн асуулт гарч болох юм. Томьёонуудыг математикт маш өргөнөөр ашигладаг. Тэдгээрийг үржүүлэх, бутархайг эмхэтгэх, тэгшитгэл бодох, интеграл тооцох гээд хэрэглэхгүй газаргүй. Иймээс эдгээр томьёонууд хаанаас гарч ирсэн, юунд хэрэгтэй, хэрхэн тогтоох, яаж хэрэглэх гээд шуудхан хэлэхэд авч үзэх зүйлүүд байна аа. Сурагчид томьёог сайн цээжилсэн мөртлөө бодлого дээр очоод бараг мэдэггүй хүн шиг болдог. Өөрөөр хэлбэл ашиглах тал дээр ноотой.

  Нээгдсэн тоо: 18906 Нийтийн

Нэг хавтгай дээр орших хоорондоо огтлолцодгүй /Зур. 11/ AB ба CD шулуунуудыг паралель шулуун гэдэг бөгөөд AB || CD гэж тэмдэглэнэ. Паралель шугамын нэг дээр байрлах цэг нөгөө шугаман дээр байрлах цэгээс ижил зайд байна. Паралель шугамын хоорондох өнцөгийг тэг гэж үздэг. Нэг чигт чиглэсэн хоёр паралель цацрагийн хоорондох өнцөг тэгтэй , эсрэг чиглэлтэй тохиолдолд тэнцүү. KM шулуунтай перпендикуляр AB, CD, EF /Зур. 12/  шулуунууд нь өөр хоорондоо паралель байна. Паралель хоёр шулуунтай перпендикуляр шулууны урт нь паралель шулуунуудын хоорондын зай болно.

  Нээгдсэн тоо: 3187 Төлбөртэй

Энэ хичээлд язгуур агуулсан буюу иррационал илэрхийллийг эмхэтгэх хоёр аргын талаар авч үзье. Иррационал илэрхийллийг эмхэтгэх бодлогууд шалгалтанд нилээд түгээмэл ирдэг бөгөөд сурагчид ийм төрлийн илэрхийллийг эмхэтгэхдээ төдийлөн сайн биш байдаг. Иймд энэхүү универсал аргыг сайтар ойлгосон байхад эмхэтгэх боломжтой ямарч төрлийн иррационал илэрхийллийг эмхэтгэж чадах юм.

хэлбэрийн илэрхийллийг эмхэтгэх

Язгуур алгуулсан илэрхийллийн нэг төрөл бол хэлбэрийн бодлого байдаг. Ерөнхий тохиолдолд илэрхийллийг хэлбэрийн хоёр гишүүнтийн квадрат байдлаар хувиргахыг оролдох хэрэгтэй. a, b, c - том тоонууд биш байвал үүнийг амархан хийдэг. Харин a, b, c "эвгүй" өгөгдсөн бол хоёр гишүүнтийн квадратыг ялгаж чадахгүйд хүрнэ.

  Нээгдсэн тоо: 8372 Төлбөртэй

Сэлгэмэл

гэсэн n ширхэг ялгаатай элементийг авъя. Зөвхөн байрыг нь солих замаар бүх боломжит хувилбарыг гаргая. Ингэхдээ хувилбар болгонд n ширхэг элемент байна. Ийм байдлаар гаргаж авсан хувилбар бүрийг сэлгэмэл гэнэ. n элементээс гаргах сэлгэмэлийн нийт тоог Pn гэж тэмдэглэнэ. Энэ тоо нь 1 ээс n хүртэлх бүх тоонуудын үржвэртэй тэнцүү байдаг.

1·2·3·…·( n−1 )·n үржвэрийг хураангуй байдлаар n! гэж тэмдэглэдэг бөгөөд факториал гэж нэрлэдэг. 0!=1 байдаг.

Жишээ:
a, b, c гэсэн 3 элементээс гарах сэлгэмэлийн тоог ол.

Бодолт:
Сэлгэмэлийн тоог олох томьёогоор болно. Үнэхээр дээрх 3 элементээс abc, acb, bac, bca, cab, cba гэсэн 6 сэлгэмэл гаргаж болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 237

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 327

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 288

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 385

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 427

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 455

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 527

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 609

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 637

 
Энэ долоо хоногт

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 1088

 

илэрхийллийн x=3 утгыг ол.

Нээгдсэн тоо : 494

 

16 см суурьтай, 10 см хажуу талтай адил хажуут гурвалжин өгөгджээ. Гурвалжинд багтсан болон гурвалжинг багтаасан тойргуудын радиус болон тойргуудын төв хоорондын зайны нийлбэрийг ол.

Нээгдсэн тоо : 409