Ангилалын бүрдүүлэгчид

Ямарч натурал тоог ангилалын бүрдүүлэгчдийн нийлбэр хэлбэрээр илэрхийлж болно.
Үүнийг ойлгохын тулд 999 тоог аваад үзье. 999 тоо нь 9 зуут, 9 аравт, 9 нэгжээс бүрдэнэ.

Тэгвэл 999 = 9 зуут + 9 аравт + 9 нэгж = 900 + 90 + 9 гэсэн үг.

Дээрх бичлэгийн 900, 90, 9 бол оронгийн бүрдүүлэгчид.

Оронгийн бүрдүүлэгч гэдэг нь тухайн орон дахь нэгжийн тоо.
Оронгийн бүрдүүлэгчдийн нийлбэрийг 999 = 9 · 100 + 9 · 10 + 9 · 1 гэж бичиж болно.
Оронгийн бүрдүүлэгчийг үржүүлж буй (1, 10, 100, 1000 г.м) тоог оронгийн нэгж гэнэ.

Жишээ нь 1 - нэгжийн оронгийн нэгж, 10 - аравтын оронгийн нэгж, 100 - зуутын оронгийн нэгж гэх мэтээр.

Оронгийн нэгжээр үржүүлэгдэж буй тоог оронгийн нэгжийн тоо гэнэ.

Ямарч тооны 12 = 1 · 10 + 2 · 1 эсхүл 12 = 10 + 2 хэлбэрийн бичлэгийг тооны оронгийн бүрдүүлэгчдийн задаргаа эсхүл оронгийн бүрдүүлэгчдийн нийлбэр гэж нэрлэнэ.
Оронгийн бүрдүүлэгчдийн нийлбэр гэдэг нь олон оронтой тоог түүний оронгийн нэгжийн нийлбэр хэлбэрээр илэрхийлсэн бичлэг.

Жишээ

4587, 4056, 2500 тоонудыг оронгийн бүрдүүлэгчдийн нийлбэрээр бич.

Бодолт

4587 = 4 · 1000 + 5 · 100 + 8 · 10 + 7 · 1 = 4000 + 500 + 80 + 7;
4056 = 4 · 1000 + 0 · 100 + 5 · 10 + 6 · 1 = 4000 + 50 + 6;
2500 = 2 · 1000 + 5 · 100 + 0 · 10 + 0 · 1 = 2000 + 500.

Оронгийн бүрдүүлэгчдийн нийлбэрээр тоог задлан бичих тун амархан. Та зөвхөн тооны ангилал буюу хэд дэх орон ямар ангилалын ямар нэгжээр илэрхийлэгдэхийг мэдэж байхад хангалттай. Жишээ 4587 тооны хувьд 4 мянгат, 5 зуут, 8 аравт, 7 нэгж гэдгээс л нийлбэр үүсч байгаа юм.
Тоог бүрдүүлэгчдийн нийлбэрээр задлан бичихэд 1000, 100, 10 гэх мэтээр олон тэгийг бичихэд төвөгтэй байвал түүнийг 10 -ын зэргээр

4587 = 4 · 103 + 5 · 102 + 8 · 101 + 7 · 1 = 4000 + 500 + 80 + 7;
4056 = 4 · 103 + 0 · 102 + 5 · 101 + 6 · 1 = 4000 + 50 + 6;
2500 = 2 · 103 + 5 · 102 + 0 · 101 + 0 · 1 = 2000 + 500.

орлуулан бичиж болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2179 Төлбөртэй

Тоон болон үсгэн илэрхийллүүд нь « = » тэмдгээр холбогдож байвал тэдгээрийг тэнцэл үүсгэлээ гэнэ. Дурын тоон тэнцэл мөн түүнчлэн үсгийн оронд орлуулж болох бүх тоон утгуудад зөв байх дурын үсгэн тэнцлүүдийг адитгал гэнэ.

Жишээ

  • 4 · 7 + 2 = 30 тоон тэнцэл нь адитгал юм.
  • үсгэн тэнцэл нь бас адитгал. Учир нь үсгүүдийн бүх утганд тэнцэл биелнэ.

  Нээгдсэн тоо: 6331 Бүртгүүлэх

Стереометр нь огторгуйн дүрс ба биетийн шинж чанаруудыг судалдаг. Хавтгайн геометрт цэг, шулуун гэсэн үндсэн ойлголтууд байдаг шиг огторгуйн геометрийн үндсэн ойлголт нь шулуун ба хавтгай болно.

Огторгуйн геометрийн үндсэн аксиом - Нэг шулуун дээр үл орших огторгуйд байрлах гурван цэгийг дайруулан зөвхөн нэг л хавтгай байгуулж болно.

Нэг шулуун дээр орших гурван цэгийг дайруулан төгсгөлгүй олон / хавтгайн цацраг / хавтгайг байгуулж болно. Цацрагийн бүх хавтгайнууд дайрч өнгөрч байгаа шулууныг хавтгайн тэнхлэг гэдэг. Энэ шулуун ба түүн дээр байрлаагүй дурын цэг буюу шулууныг дайруулан зөвхөн нэг хавтгайг татаж болно. Хоёр шулууныг дайруулан хавтгайг дандаа татаж болдоггүй. Ийм шулуунуудыг зөрсөн шулуун гэнэ. Жишээ нь: Өрөөний нэг хананд татсан босоо шугам ба эсрэг хананд татсан хөндлөн шугамууд нь зөрсөн шугамууд болно.

  Нээгдсэн тоо: 5108 Нийтийн

Модул ухагдхууныг сурагчид бүгд мэддэг ч түүнийг сайн ойлгосон нь маш цөөн байдаг. Асуудлын гол нь модул сэдвийн хичээлийг өнгөцхөн үздэг дээр нь бодит амьдралд модул оролцсон жишээнүүд цөөн тохиолддогтой холбоотой байж мэднэ. Иймээс модултай тэгшитгэлийг хэрхэн бодох талаар авч үзье. Модул гэхээр сурагчид их хүнд хэцүү зүйл гээд зайлсхийх гээд байдаг ч үнэн хэрэгтээ тийм ч хүнд ойлголт ердөө биш гэдгийг хичээлийг үзээд мэднэ. Материалыг хөнгөн, ойлгоход амар байлгах үүднээс таслан оруулна. Хүүхдүүд олон хуудас материалыг судлан ойлгох нь хүндрэлтэй байж болох талтай. Материалыг 30-40 минутын хичээлийн конспект байдлаар бэлтгэн хүргэх нь илүү үр дүнтэй гэж үзсэн хэрэг.

  Нээгдсэн тоо: 2604 Төлбөртэй

Тэнцэл бишийн баталгаа

Тэнцэл бишийг батлах хэд хэдэн арга байдаг. Эдгээрийг   / энд a эерэг тоо / жишээн дээр авч үзье.
1. Мэдэгдэж буй эсвэл өмнө нь батлагдсан тэнцэл бишийг ашиглах.

( a−1 )2 ≥0 гэдэг нь ойлгомжтой. a>0 учраас байна. Хаалтыг задалбал болох бөгөөд эндээс гарна.

2. Тэнцэл бишийн хэсгүүдийн ялгаварын тэмдгийг ашиглах.

Тэнцэл бишийн зүүн баруун талын хэсгийн ялгаварыг авч үзье.
Эндээс a=1 үед л тэнцэл гарах нь харагдаж байна.

3. Эсрэгээс нь батлах.

гэж үзье. Тэнцэл бишийн хоёр талыг a гаар үржүүлбэл a2 +1<2a буюу a2 +1−2a<0 өөрөөр (a−1)2 <0 болно. Энэ нь буруу тэнцэл биш тэгэхээр эсрэг тохиолдол нь үнэн болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 167

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 243

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 205

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 318

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 350

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 355

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 436

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 448

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 511

 
Энэ долоо хоногт

функцийн уламжлалыг тооц.

Нээгдсэн тоо : 523

 

утгыг ол.

Нээгдсэн тоо : 313

 

prob04_103_01 ба prob04_103_02 векторууд перпендикуляр бол y -ийн утгыг ол.

Нээгдсэн тоо : 177