Ангилалын бүрдүүлэгчид

Ямарч натурал тоог ангилалын бүрдүүлэгчдийн нийлбэр хэлбэрээр илэрхийлж болно.
Үүнийг ойлгохын тулд 999 тоог аваад үзье. 999 тоо нь 9 зуут, 9 аравт, 9 нэгжээс бүрдэнэ.

Тэгвэл 999 = 9 зуут + 9 аравт + 9 нэгж = 900 + 90 + 9 гэсэн үг.

Дээрх бичлэгийн 900, 90, 9 бол оронгийн бүрдүүлэгчид.

Оронгийн бүрдүүлэгч гэдэг нь тухайн орон дахь нэгжийн тоо.
Оронгийн бүрдүүлэгчдийн нийлбэрийг 999 = 9 · 100 + 9 · 10 + 9 · 1 гэж бичиж болно.
Оронгийн бүрдүүлэгчийг үржүүлж буй (1, 10, 100, 1000 г.м) тоог оронгийн нэгж гэнэ.

Жишээ нь 1 - нэгжийн оронгийн нэгж, 10 - аравтын оронгийн нэгж, 100 - зуутын оронгийн нэгж гэх мэтээр.

Оронгийн нэгжээр үржүүлэгдэж буй тоог оронгийн нэгжийн тоо гэнэ.

Ямарч тооны 12 = 1 · 10 + 2 · 1 эсхүл 12 = 10 + 2 хэлбэрийн бичлэгийг тооны оронгийн бүрдүүлэгчдийн задаргаа эсхүл оронгийн бүрдүүлэгчдийн нийлбэр гэж нэрлэнэ.
Оронгийн бүрдүүлэгчдийн нийлбэр гэдэг нь олон оронтой тоог түүний оронгийн нэгжийн нийлбэр хэлбэрээр илэрхийлсэн бичлэг.

Жишээ

4587, 4056, 2500 тоонудыг оронгийн бүрдүүлэгчдийн нийлбэрээр бич.

Бодолт

4587 = 4 · 1000 + 5 · 100 + 8 · 10 + 7 · 1 = 4000 + 500 + 80 + 7;
4056 = 4 · 1000 + 0 · 100 + 5 · 10 + 6 · 1 = 4000 + 50 + 6;
2500 = 2 · 1000 + 5 · 100 + 0 · 10 + 0 · 1 = 2000 + 500.

Оронгийн бүрдүүлэгчдийн нийлбэрээр тоог задлан бичих тун амархан. Та зөвхөн тооны ангилал буюу хэд дэх орон ямар ангилалын ямар нэгжээр илэрхийлэгдэхийг мэдэж байхад хангалттай. Жишээ 4587 тооны хувьд 4 мянгат, 5 зуут, 8 аравт, 7 нэгж гэдгээс л нийлбэр үүсч байгаа юм.
Тоог бүрдүүлэгчдийн нийлбэрээр задлан бичихэд 1000, 100, 10 гэх мэтээр олон тэгийг бичихэд төвөгтэй байвал түүнийг 10 -ын зэргээр

4587 = 4 · 103 + 5 · 102 + 8 · 101 + 7 · 1 = 4000 + 500 + 80 + 7;
4056 = 4 · 103 + 0 · 102 + 5 · 101 + 6 · 1 = 4000 + 50 + 6;
2500 = 2 · 103 + 5 · 102 + 0 · 101 + 0 · 1 = 2000 + 500.

орлуулан бичиж болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1817 Төлбөртэй

Вектортой холбоотой бодлого сурагчдад нилээд хүндрэл учруулдаг. Учир нь тухайн сэдвийг дунд сургуульд маш өнгөцхөн байдлаар үзээд өнгөрдөгтэй холбоотой байх. Ойлголтыг дээд математикт гүнзгийрүүлэн үздэг ч ерөнхий ойлголтыг сайн ойлгосон байж л бодлого бодоход ашиглана. Иймээс энэ хичээлд векторын төрлүүдийн талаар авч үзье.

  Нээгдсэн тоо: 749 Төлбөртэй

Рационал тоо гэдэг нь өөртөө бүхэл болон бутархай тоонуудыг агуулсан олонлог юм.
Рационал тооны олонлогийг Q үсгээр тэмдэглэдэг.

Санамж: Алгебрийн хичээлүүд болон бодлогод тоонуудын олонлогуудын тэмдэглэгээг өргөнөөр ашигладаг тул тэдгээрийг цээжлэхийг зөвлөе

  Нээгдсэн тоо: 1995 Төлбөртэй

Модултай тэгшитгэлийг бодох I хичээлд модул гэж юу болох, үндсэн томьёоны талаар авч үзсэн. Жишээ болгон энгийн тэгшитгэүүдийг бодсноор модултай тэгшитгэлийг бодох алгоритм байж болох үндэслэлийг гарган ирсэн. Тэгвэл энэ хичээлээр модултай тэгшитгэлүүдийн төрлүүд тэдгээрийг хэрхэн бодох аргачлалд суралцая. Модул ухагдхууныг хүнд гэсэн ойлголтоос болоод сурагчид түүнийг судлан суралцахдаа хойрго хандах явдал бий. Хичээлийн материалыг ойлгохгүй бол дахин үзээд ойлгон авахыг хичээгээрэй. Таныг хичээлийг хэдэн удаа үзсэнг хэн ч мэдэхгүй ямарч зэмлэл, хариуцлага хүлээлгэхгүй, цаг хугацаанд ч шахагдахгүй байдал нь интернет сургалтын давуу тал шүү.

  Нээгдсэн тоо: 7431 Төлбөртэй

Олон өнцөгт хавтгайн хэсгүүдээс бүрдсэн биетийг олон талт гэнэ. Эдгээр олон өнцөгтийг талууд, тэдгээрийн талуудыг ирмэгүүд, оройнуудыг нь олон талтын оройнууд гэнэ. Хоёр оройг холбосон нэг тал дээр оршдоггүй хэрчмийг олон талтын диагнал гэдэг. Бүх диагнал нь олон талт дотроо байдаг биетийг гүдгэр олон талт гэнэ.

Призм

Призм гэдэг нь /Зур. 79/ хоёр тал  нь ( призмийн суурь) ABCDEF ба abcdef гэсэн паралел ижил олон өнцөгт , бусад талууд нь шулуунуудтай паралел паралелграм хавтгайнуудаас бүрдсэн олон талт юм. паралелграмуудыг хажуу талууд шулуунуудыг хажуу ирмэгүүд гэдэг. Нэг сууриас нөгөө суурьт буулгасан дурын перпендикуляр нь призмийн өндөр болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 235

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 322

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 283

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 382

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 424

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 451

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 523

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 602

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 631

 
Энэ долоо хоногт

Тэмцээнд 16 шатарчин оролцсон. Нэгийн давааны хуваарийн хичнээн хувилбар байж болох вэ? / Хуьаарьт дор хаяж нэг өрөгт тоглох хүмүүс нь ялгаатай бол хувилбар гэж тооцно. Тоглох өнгө, ширээний дугаарыг тооцохгүй/

Нээгдсэн тоо : 1302

 

Нээгдсэн тоо : 1071

 

prob02_187_01 илэрхийллийг хялбарчил.

Нээгдсэн тоо : 181