Прогрессийн бодлогыг бодох

Прогресстой холбоотой бодлогууд элсэлтийн ерөнхий шалгалтанд ирэх нь бараг уламжлал. Бид энэ хичээлээр прогресстой хамааралтай бодлогуудын талаар авч үзэх болно. Үндсэн ойлголтыг Арифметик ба геометр прогресс хичээлээс аваарай. Прогрессын бодлогуудыг бодоход холбогдох томьёонуудыг мэдэж байхад тийм хүнд биш. Тригнометрийн тэгшитгэл, алгебрийн тэгшитгэл, илэрхийлэл хялбарчлах гэх мэтийн бодлогыг бодох тогтсон аргачлал, дүрэм байдаг бол прогресстой холбоотой бодлогыг бодох тодорхой аргачлалууд гэж байдаггүй бодлогын нөхцөлд тулгуурлан томьёогоо ашиглаад явдаг.

Энэ нь нэг талаас прогрессын бодлогуудыг амархан мэт харагдуулах боловч нөгөө талаас асуудал үүсгэдэг адармаатай. Ингээд прогресстой холбоотой бодлогуудын талаар авч үзье. Бодлогын бодолтыг үзэхээсээ өмнө санааг ашиглан өөрсдөө бодох гээд үзээрэй.

1. Бодлогын нөхцөлд прогресс гэдгийг шууд өгсөн байвал бодолт хөнгөн болно. Энд прогрессын ерөнхий гишүүний, нийлбэрийн, дараалсан 3 гишүүдийн хамаарлын томьёогоор асуудлыг шийдэх боломжтой. Жишээ авч үзье.

Бодлого 6.027       Элсэлтийн ерөнхий шалгалт 2014 A-23
a1=4, S5=40 байх арифметик прогрессийн d=q, a1=b1 нөхцөлийг хангах геометр прогрессийн 5-р гишүүнийг ол.

Санаа
Энэ бодлогын хувьд арифметик прогресс гэдгийг хэлсэн. Эхний гишүүн болон 5 гишүүний нийлбэр өгөгдсөн тул нийлбэрийн томьёогоор ялгавар /d/ олоод цааш геометр прогрессын 5-р гишүүнийг олоход хэцүү зүйл байхгүй.

Бодолт

Бодлого 6.029
Өсөх геометр прогресс үүсгэх гурван тооны 3 дахь нь 12 -той тэнцүү. Хэрвээ 12-ыг 9 -өөр соливол эдгээр гурван тоо нь арифметик прогресс үүсгэх бол тоонуудын нийлбэрийг ол.

Санаа
Энд бас л прогресс үүсгэх тоонууд гээд бодлогыг прогресстой холбоотойг шууд заан өгсөн байна. Эхний жишээний хувьд нийлбэр, эхний гишүүд гэсэн бол энэ жишээнд 3 тоо прогресс үүсгэх тухай байгаа тул танд шууд л дараалсан гурван гишүүний хамааралын томьёо орж ёстой.

Бодолт

Дээрх жишээнүүд шиг прогресс гэдгийг шууд заасан бодлогуудыг томьёогоо мэдэж байхад амархан шийдэх боломжтой. Гэтэл шалгалт шүүлэг дээр дандаа ийм бодлогууд ирээд байдаггүйг дараагийн хэсгээс харцгаая.

2. Прогрессын бодлого гэдэг нь мэдэгдэж байгаа ч математикийн өөр сэдэвтэй хавсарсан бодлогууд. Ийм бодлогууд сурагчдаас илүү хүчин чармайлт өөрөөр хэлбэл илүү мэдлэгийг шаардана. Жишээ нь

Бодлого 6.024       Элсэлтийн ерөнхий шалгалт 2007 A-15
Арифметик прогрессийн эхний гишүүн нь -27, ялгавар нь 5 бол эхний n гишүүний нийлбэрийн хамгийн бага утгыг ол.

Санаа
Эхний гишүүн, ялгавар өгөгдсөн тул нийлбэрийг илэрхийлэхэд амархан. Шууд томьёо байгаа. Харин нийлбэр n -ээс хамаарсан функц болно. Эндээс функцийн шинжилгээг ашиглах юм.

Бодолт

Бодлого 6.002
Дурын n гишүүний нийлбэр нь n ийн квадратыг 4-өөр үржүүлсэнтэй тэнцүү байдаг арифметик прогрессын эхний 6 гишүүний нийлбэрийг ол.

Санаа
Арифметик прогрессийн n гишүүний нийлбэрийн томьёоноос тэгшитгэл зохио.

Бодолт

Бодлогын өгүүлбэрт n гишүүний нийлбэр, хамгийн их бага утга олох гэх мэтээр дээрх жишээний нөхцлүүдтэй төстэй зүйл байвал өгөгдсөн n -ээс хамаарсан функцыг прогрессийн томьёонуудаар гаргаад цааш олох зүйлийг математикийн бусад аргуудыг ашиглан олох хэрэгтэй болно.

3. Бодлогын нөхцөлд прогресс гэдгийг заагүй бодлогууд. Ийм бодлогууд хамгийн адармаатай. Учир нь сурагчид эхлээд бодлогын нөхцөлд прогресс байгааг олж харах хэрэгтэй болдог. Бодлогууд тэгшитгэл, илэрхийлэл, өгууүлбэртэй бодлого гэх мэтээр маш олон төрлөөр байж болно. Ерөнхий хэлбэр нь голдуу дараалал байдлаар өгөгдсөн байдагийг тогтоох хэрэгтэй. Жишээ нь

Бодлого 6.022       Элсэлтийн ерөнхий шалгалт 2012 A-13

Санаа
A, B нь прогресс үүсгэж байгааг олж харах.

Бодолт

Бодлого 6.004
|x| < 0.5 бол тэгшитгэлийг бод.

Санаа
Дараалал прогресс үүсгэж байгааг батлах.

Бодолт

Бодлого 6.030  
a=1,(4) бутархайг энгийн бутаргай болго.

Санаа
Бутархайг өөр хэлбэрээр бичээд прогресс байгааг олох

Бодолт

Эндээс прогрессийн бодлогууд энгийн мэт боловч нилээд асуудал үүсгэж болохоор нь харагдана. Бодлого бодох нэг үндэс бол нөхцлийг сайн ойлгох явдал. Энэ тухай ЭЕШ-г амжилттай өгөх арга нийтлэлээс үзээрэй. Нөхцлийг гүйцэд ойлгохгүйгээр бодолтыг эхэлбэл цаг хугацаа алдах цаашлаад буруу бодох нөхцөл бүрдэнэ. Иймээс бодлогын нөхцлийг ойлгон уг бодлогыг ямар арга хэрэгсэл ашиглан бодохоо тодорхойлсны дараа бодолтоо эхлэх хэрэгтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4589 Бүртгүүлэх

O гэсэн нэг цэгээс / өнцгийн орой / гарсан OA , OB хоёр цацрагаас / өнцгийн талууд / үүссэн геометрийн дүрсийг өнцөг гэнэ. /Зур. 1/

Өнгийг тэмдэг ба өнцгийн орой, төгсгөлүүдийг заасан 3 үсгээр гэж тэмдэглэнэ. Ингэхдээ оройг илэрхийлэх үсгийг дунд нь бичнэ. Өнцгийг OA цацраг O оройг тойрон OB цацрагтай давхцах хүртэл эргэлтээр хэмжинэ. Радиан ба градус гэсэн хоёр нэгжийг өнцгийн хэмжээнд голлон ашигладаг.

  Нээгдсэн тоо: 755 Бүртгүүлэх

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг. ЕБС -д орсноос төгсөх хүртлээ тооны буюу математикийн хичээлийг үздэг. Математикийн нэг ухагдхуун нөгөөгийнхөө суурь болоод явдаг тул бүр эхнээс нь буюу арифметикийг сайн ойлгосон байх шаардлагатай. Бага хүүхдүүдэд зааж байгаа тул ухагдхуунууд энгийн тул хүмүүс арифметикт нэг их анхаардаггүй нь хүүхдийн хоцрогдолын суурийг тавьдаг ч байж мэдэх тул сайтын арифметиктэй холбоотой хичээлүүдийг хүүхэдтэйгээ цуг үзэхийг зөвлөе. 

Хичээлээр тоо нэмэгдүүлэх ухагдхууныг авч үзье. Тоог хэдэн нэгжээр, хэд дахин эсхүл тодорхой хувиар нэмэгдүүлж болно.

  Нээгдсэн тоо: 2574 Төлбөртэй

Энэ нийтлэлээр бодит шалгалт дээр ирж байсан тригнометрийн хоёр бодлогын бодолтыг дэлгэрэнгүйгээр тайлбарлах болно. Эдгээр бодлогын бодолтыг сайн судлаад ойлговол тригнометрийн бодлогыг ойлгоход сайн суурь болж чадна. Бодлогын шийдүүдээс өгөгдсөн завсар дахь утгуудыг сонгох нэмэлт нөхцөл оруулсан нь сурагчдаас тригнометрийн илүү нарийн ойлголтыг шаардах юм. Сурагчид бодлогыг хураангуйлан энгийн хэлбэрт оруулж чаддаг ч шийдийг гаргах тэр тусмаа өгөгдсөн завсарт харьяалагдах шийдийг сонгохдоо үндсэн хүндрэлтэй тулдаг. Иймд бодолтуудыг анхааралтай судлаад ойлгон авахыг хичээгээрэй. Олон бодлого бодохдоо биш аргачлалыг ойлгох нь чухал.

  Нээгдсэн тоо: 3336 Төлбөртэй

ЕБС-ын програмын хүндхэн сэдвүүдийн нэг болох тэнцэтгэл бишийн бодолтын онцлогийг авч үзье. Функцууд эсхүл илэрхийллийг >, <,  ≥,  ≤ тэмдэгүүдээр холбосон бичлэгийг тэнцэтгэл биш гэдэг. Жишээ нь f(x)<g(x), f(x)>g(x), f(x)≥g(x), f(x)≤0 гэх мэтээр

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 150

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 217

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 184

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 301

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 330

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 338

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 414

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 412

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 490

 
Энэ долоо хоногт

Тэгш өнцөгт параллелепипедын диагнал түүний 3 ба 4 хэмжээтэй талстад 60 градусын өнцгөөр налсан бол диагоналын урт хэд вэ?

Нээгдсэн тоо : 1287

 

Суурийн радиус нь 4 см байх шулуун дугуй цилиндрийн нэг үзүүрээс зурагт үзүүлснээр хавтгайгаар огтлоход хамгийн урт байгуулагч нь 15 см, хамгийн богино байгуулагч нь 9 см болсон бол үүссэн биетийн эзэлхүүнийг ол.

Нээгдсэн тоо : 2936

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 209