Прогрессийн бодлогыг бодох

Прогресстой холбоотой бодлогууд элсэлтийн ерөнхий шалгалтанд ирэх нь бараг уламжлал. Бид энэ хичээлээр прогресстой хамааралтай бодлогуудын талаар авч үзэх болно. Үндсэн ойлголтыг Арифметик ба геометр прогресс хичээлээс аваарай. Прогрессын бодлогуудыг бодоход холбогдох томьёонуудыг мэдэж байхад тийм хүнд биш. Тригнометрийн тэгшитгэл, алгебрийн тэгшитгэл, илэрхийлэл хялбарчлах гэх мэтийн бодлогыг бодох тогтсон аргачлал, дүрэм байдаг бол прогресстой холбоотой бодлогыг бодох тодорхой аргачлалууд гэж байдаггүй бодлогын нөхцөлд тулгуурлан томьёогоо ашиглаад явдаг.

Энэ нь нэг талаас прогрессын бодлогуудыг амархан мэт харагдуулах боловч нөгөө талаас асуудал үүсгэдэг адармаатай. Ингээд прогресстой холбоотой бодлогуудын талаар авч үзье. Бодлогын бодолтыг үзэхээсээ өмнө санааг ашиглан өөрсдөө бодох гээд үзээрэй.

1. Бодлогын нөхцөлд прогресс гэдгийг шууд өгсөн байвал бодолт хөнгөн болно. Энд прогрессын ерөнхий гишүүний, нийлбэрийн, дараалсан 3 гишүүдийн хамаарлын томьёогоор асуудлыг шийдэх боломжтой. Жишээ авч үзье.

Бодлого 6.027       Элсэлтийн ерөнхий шалгалт 2014 A-23
a1=4, S5=40 байх арифметик прогрессийн d=q, a1=b1 нөхцөлийг хангах геометр прогрессийн 5-р гишүүнийг ол.

Санаа
Энэ бодлогын хувьд арифметик прогресс гэдгийг хэлсэн. Эхний гишүүн болон 5 гишүүний нийлбэр өгөгдсөн тул нийлбэрийн томьёогоор ялгавар /d/ олоод цааш геометр прогрессын 5-р гишүүнийг олоход хэцүү зүйл байхгүй.

Бодолт

Бодлого 6.029
Өсөх геометр прогресс үүсгэх гурван тооны 3 дахь нь 12 -той тэнцүү. Хэрвээ 12-ыг 9 -өөр соливол эдгээр гурван тоо нь арифметик прогресс үүсгэх бол тоонуудын нийлбэрийг ол.

Санаа
Энд бас л прогресс үүсгэх тоонууд гээд бодлогыг прогресстой холбоотойг шууд заан өгсөн байна. Эхний жишээний хувьд нийлбэр, эхний гишүүд гэсэн бол энэ жишээнд 3 тоо прогресс үүсгэх тухай байгаа тул танд шууд л дараалсан гурван гишүүний хамааралын томьёо орж ёстой.

Бодолт

Дээрх жишээнүүд шиг прогресс гэдгийг шууд заасан бодлогуудыг томьёогоо мэдэж байхад амархан шийдэх боломжтой. Гэтэл шалгалт шүүлэг дээр дандаа ийм бодлогууд ирээд байдаггүйг дараагийн хэсгээс харцгаая.

2. Прогрессын бодлого гэдэг нь мэдэгдэж байгаа ч математикийн өөр сэдэвтэй хавсарсан бодлогууд. Ийм бодлогууд сурагчдаас илүү хүчин чармайлт өөрөөр хэлбэл илүү мэдлэгийг шаардана. Жишээ нь

Бодлого 6.024       Элсэлтийн ерөнхий шалгалт 2007 A-15
Арифметик прогрессийн эхний гишүүн нь -27, ялгавар нь 5 бол эхний n гишүүний нийлбэрийн хамгийн бага утгыг ол.

Санаа
Эхний гишүүн, ялгавар өгөгдсөн тул нийлбэрийг илэрхийлэхэд амархан. Шууд томьёо байгаа. Харин нийлбэр n -ээс хамаарсан функц болно. Эндээс функцийн шинжилгээг ашиглах юм.

Бодолт

Бодлого 6.002
Дурын n гишүүний нийлбэр нь n ийн квадратыг 4-өөр үржүүлсэнтэй тэнцүү байдаг арифметик прогрессын эхний 6 гишүүний нийлбэрийг ол.

Санаа
Арифметик прогрессийн n гишүүний нийлбэрийн томьёоноос тэгшитгэл зохио.

Бодолт

Бодлогын өгүүлбэрт n гишүүний нийлбэр, хамгийн их бага утга олох гэх мэтээр дээрх жишээний нөхцлүүдтэй төстэй зүйл байвал өгөгдсөн n -ээс хамаарсан функцыг прогрессийн томьёонуудаар гаргаад цааш олох зүйлийг математикийн бусад аргуудыг ашиглан олох хэрэгтэй болно.

3. Бодлогын нөхцөлд прогресс гэдгийг заагүй бодлогууд. Ийм бодлогууд хамгийн адармаатай. Учир нь сурагчид эхлээд бодлогын нөхцөлд прогресс байгааг олж харах хэрэгтэй болдог. Бодлогууд тэгшитгэл, илэрхийлэл, өгууүлбэртэй бодлого гэх мэтээр маш олон төрлөөр байж болно. Ерөнхий хэлбэр нь голдуу дараалал байдлаар өгөгдсөн байдагийг тогтоох хэрэгтэй. Жишээ нь

Бодлого 6.022       Элсэлтийн ерөнхий шалгалт 2012 A-13

Санаа
A, B нь прогресс үүсгэж байгааг олж харах.

Бодолт

Бодлого 6.004
|x| < 0.5 бол тэгшитгэлийг бод.

Санаа
Дараалал прогресс үүсгэж байгааг батлах.

Бодолт

Бодлого 6.030  
a=1,(4) бутархайг энгийн бутаргай болго.

Санаа
Бутархайг өөр хэлбэрээр бичээд прогресс байгааг олох

Бодолт

Эндээс прогрессийн бодлогууд энгийн мэт боловч нилээд асуудал үүсгэж болохоор нь харагдана. Бодлого бодох нэг үндэс бол нөхцлийг сайн ойлгох явдал. Энэ тухай ЭЕШ-г амжилттай өгөх арга нийтлэлээс үзээрэй. Нөхцлийг гүйцэд ойлгохгүйгээр бодолтыг эхэлбэл цаг хугацаа алдах цаашлаад буруу бодох нөхцөл бүрдэнэ. Иймээс бодлогын нөхцлийг ойлгон уг бодлогыг ямар арга хэрэгсэл ашиглан бодохоо тодорхойлсны дараа бодолтоо эхлэх хэрэгтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 5005 Нийтийн

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

  Нээгдсэн тоо: 7457 Төлбөртэй

Хавтгай буюу огторгуйд байрлах хоёр цэгийг холбосон чиглэл бүхий хэрчмийг вектор гэнэ. Векторыг голдуу жижиг үсэг эсвэл эхлэл төгсгөлийн цэгүүдээр тэмдэглэж дээр нь зураас тавьдаг.
Жишээ нь A цэгээс B цэг рүү чиглэсэн векторыг эсвэл гэж тэмдэглэнэ.
векторуудыг эсрэг вектор гэнэ. Тэгвэл болно.
Эхлэл төгсгөлийн цэг нь давхцаж байгаа векторыг тэг вектор гэдэг бөгөөд 0 эсвэл гэж тэмдэглэнэ.
Векторыг үзүүлж байгаа AB хэрчмийн уртыг векторын урт /модуль/ /тэмдэглэгээ |a| / гэнэ.
Хэрвээ векторуудын чиглэл заасан хэрчмүүд паралел шулуун дээр байвал тэдгээрийг коллинар вектор гэдэг. a, b векторуудыг коллинар гэдгийг a||b гэж тэмдэглэнэ.
Гурав ба түүнээс дээш векторууд нэг хавтгайд оршиж байвал тэдгээрийг комплинар вектор гэнэ.

  Нээгдсэн тоо: 17 Бүртгүүлэх

Хичээлээр хасах үйлдэлд оролцогчдийн өөрчлөлт ялгавар буюу үр дүнд хэрхэн нөлөөлөх талаар авч үзье. Нийлбэр, ялгаварын гишүүдийн өөрчлөлт цаашдаа алгебрийн илэрхийллийн адитгал хувиргалтын суурь болдог тул ухагдхууныг сайн ойлгон, тогтоож авахыг зөвлөе. Математикт холбоогүй ойлголт, дүрэм гэж байдаггүй учраас бүгдийг эхнээс нь нухацтай судлан ойлгож хэрэглэж сурах хэрэгтэй. Нэмэх, хасах үйлдлийн гишүүдийн өөрчлөлтийн дүрмүүд энгийн мэт санагдаж болох ч эдгээр дүрмүүд алгебрийн илэрхийлэл, тэгшитгэл, тэнцэтгэл биш гээд бүх л зүйлд хүчинтэй байдаг.

  Нээгдсэн тоо: 22327 Нийтийн

Анхны ба зохиомол тоо

0 ба 1 -ээс бусад бүх бүхэл тоо дор хаяж 2 / 1 болон тухайн тоо өөрөө / хуваагчтай байдаг. Зөвхөн өөртөө болон 1 -д хуваагддаг тоог  анхны тоо гэдэг. Хоёроос олон хуваагчтай тоог зохиомол тоо гэнэ. Анхны тоон олонлог нь төгсгөлгүй. 200 хүртлэх тоон доторх анхны тооны жагсаалтыг үзүүлье

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 12

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 14

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 15

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 13

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 21

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2219

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 549