Прогрессийн бодлогыг бодох

Прогресстой холбоотой бодлогууд элсэлтийн ерөнхий шалгалтанд ирэх нь бараг уламжлал. Бид энэ хичээлээр прогресстой хамааралтай бодлогуудын талаар авч үзэх болно. Үндсэн ойлголтыг Арифметик ба геометр прогресс хичээлээс аваарай. Прогрессын бодлогуудыг бодоход холбогдох томьёонуудыг мэдэж байхад тийм хүнд биш. Тригнометрийн тэгшитгэл, алгебрийн тэгшитгэл, илэрхийлэл хялбарчлах гэх мэтийн бодлогыг бодох тогтсон аргачлал, дүрэм байдаг бол прогресстой холбоотой бодлогыг бодох тодорхой аргачлалууд гэж байдаггүй бодлогын нөхцөлд тулгуурлан томьёогоо ашиглаад явдаг.

Энэ нь нэг талаас прогрессын бодлогуудыг амархан мэт харагдуулах боловч нөгөө талаас асуудал үүсгэдэг адармаатай. Ингээд прогресстой холбоотой бодлогуудын талаар авч үзье. Бодлогын бодолтыг үзэхээсээ өмнө санааг ашиглан өөрсдөө бодох гээд үзээрэй.

1. Бодлогын нөхцөлд прогресс гэдгийг шууд өгсөн байвал бодолт хөнгөн болно. Энд прогрессын ерөнхий гишүүний, нийлбэрийн, дараалсан 3 гишүүдийн хамаарлын томьёогоор асуудлыг шийдэх боломжтой. Жишээ авч үзье.

Бодлого 6.027       Элсэлтийн ерөнхий шалгалт 2014 A-23
a1=4, S5=40 байх арифметик прогрессийн d=q, a1=b1 нөхцөлийг хангах геометр прогрессийн 5-р гишүүнийг ол.

Санаа
Энэ бодлогын хувьд арифметик прогресс гэдгийг хэлсэн. Эхний гишүүн болон 5 гишүүний нийлбэр өгөгдсөн тул нийлбэрийн томьёогоор ялгавар /d/ олоод цааш геометр прогрессын 5-р гишүүнийг олоход хэцүү зүйл байхгүй.

Бодолт

Бодлого 6.029
Өсөх геометр прогресс үүсгэх гурван тооны 3 дахь нь 12 -той тэнцүү. Хэрвээ 12-ыг 9 -өөр соливол эдгээр гурван тоо нь арифметик прогресс үүсгэх бол тоонуудын нийлбэрийг ол.

Санаа
Энд бас л прогресс үүсгэх тоонууд гээд бодлогыг прогресстой холбоотойг шууд заан өгсөн байна. Эхний жишээний хувьд нийлбэр, эхний гишүүд гэсэн бол энэ жишээнд 3 тоо прогресс үүсгэх тухай байгаа тул танд шууд л дараалсан гурван гишүүний хамааралын томьёо орж ёстой.

Бодолт

Дээрх жишээнүүд шиг прогресс гэдгийг шууд заасан бодлогуудыг томьёогоо мэдэж байхад амархан шийдэх боломжтой. Гэтэл шалгалт шүүлэг дээр дандаа ийм бодлогууд ирээд байдаггүйг дараагийн хэсгээс харцгаая.

2. Прогрессын бодлого гэдэг нь мэдэгдэж байгаа ч математикийн өөр сэдэвтэй хавсарсан бодлогууд. Ийм бодлогууд сурагчдаас илүү хүчин чармайлт өөрөөр хэлбэл илүү мэдлэгийг шаардана. Жишээ нь

Бодлого 6.024       Элсэлтийн ерөнхий шалгалт 2007 A-15
Арифметик прогрессийн эхний гишүүн нь -27, ялгавар нь 5 бол эхний n гишүүний нийлбэрийн хамгийн бага утгыг ол.

Санаа
Эхний гишүүн, ялгавар өгөгдсөн тул нийлбэрийг илэрхийлэхэд амархан. Шууд томьёо байгаа. Харин нийлбэр n -ээс хамаарсан функц болно. Эндээс функцийн шинжилгээг ашиглах юм.

Бодолт

Бодлого 6.002
Дурын n гишүүний нийлбэр нь n ийн квадратыг 4-өөр үржүүлсэнтэй тэнцүү байдаг арифметик прогрессын эхний 6 гишүүний нийлбэрийг ол.

Санаа
Арифметик прогрессийн n гишүүний нийлбэрийн томьёоноос тэгшитгэл зохио.

Бодолт

Бодлогын өгүүлбэрт n гишүүний нийлбэр, хамгийн их бага утга олох гэх мэтээр дээрх жишээний нөхцлүүдтэй төстэй зүйл байвал өгөгдсөн n -ээс хамаарсан функцыг прогрессийн томьёонуудаар гаргаад цааш олох зүйлийг математикийн бусад аргуудыг ашиглан олох хэрэгтэй болно.

3. Бодлогын нөхцөлд прогресс гэдгийг заагүй бодлогууд. Ийм бодлогууд хамгийн адармаатай. Учир нь сурагчид эхлээд бодлогын нөхцөлд прогресс байгааг олж харах хэрэгтэй болдог. Бодлогууд тэгшитгэл, илэрхийлэл, өгууүлбэртэй бодлого гэх мэтээр маш олон төрлөөр байж болно. Ерөнхий хэлбэр нь голдуу дараалал байдлаар өгөгдсөн байдагийг тогтоох хэрэгтэй. Жишээ нь

Бодлого 6.022       Элсэлтийн ерөнхий шалгалт 2012 A-13

Санаа
A, B нь прогресс үүсгэж байгааг олж харах.

Бодолт

Бодлого 6.004
|x| < 0.5 бол тэгшитгэлийг бод.

Санаа
Дараалал прогресс үүсгэж байгааг батлах.

Бодолт

Бодлого 6.030  
a=1,(4) бутархайг энгийн бутаргай болго.

Санаа
Бутархайг өөр хэлбэрээр бичээд прогресс байгааг олох

Бодолт

Эндээс прогрессийн бодлогууд энгийн мэт боловч нилээд асуудал үүсгэж болохоор нь харагдана. Бодлого бодох нэг үндэс бол нөхцлийг сайн ойлгох явдал. Энэ тухай ЭЕШ-г амжилттай өгөх арга нийтлэлээс үзээрэй. Нөхцлийг гүйцэд ойлгохгүйгээр бодолтыг эхэлбэл цаг хугацаа алдах цаашлаад буруу бодох нөхцөл бүрдэнэ. Иймээс бодлогын нөхцлийг ойлгон уг бодлогыг ямар арга хэрэгсэл ашиглан бодохоо тодорхойлсны дараа бодолтоо эхлэх хэрэгтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2286 Бүртгүүлэх

Олон функцыг /яв цав эсвэл ойролцоогоор / энгийн томьёогоор илэрхийлж болдог. Жишээлбэл, дугуйн талбай S, түүний радиусын r хоорондын хамаарал нь томьёогоор илэрхийлэгдэнэ; Хоёр хувьсагчийн функционал хамаарал хэсэгт авч үзсэн дээш шидэгдсэн биеийн хүрэх өндөр h, нийт хугацаа T  хоёрын хамаарал гэх мэт. Агаарын эсэргүүцэл, дэлхийн таталтын хүч өндрөөс хамаардаг зэргийг тооцоогүй учраас энэ нь ойролцоо томьёо юм. Функционал хамааралыг томьёогоор илэрхийлэх боломжгүй эсвэл томьёо нь тооцоо хийхэд тохиромж муутай байх тохиолдол бас байдаг. Ийм үед функцыг хүснэгт эсвэл графикаар үзүүлдэг.
Жишээ нь Усны буцлах температур T, агаарын даралт p хоёрын  функционал хамааралыг нэг томьёогоор илэрхийлж болохгүй боловч хүснэгтээр үзүүлж болно.

  Нээгдсэн тоо: 256 Нийтийн

Ялгавар дахь хасагдагчийг эсрэг тэмдэгтэйгээр авбал ялгаварыг нийлбэрээр сольж болно. Нийлбэрийн энэ шинжийг

a - b = a + (-b)

ерөнхий томьёогоор илэрхийлж болно. Эндээс дурын ялгаварыг нийлбэрээр сольж болохыг энэ томьёо илэрхийлнэ. Иймээс алгебрт хасах, нэмэх үйлдэлүүд оролцсон дурын илэрхийллийг нийлбэр гэж үзэж болно.

  Нээгдсэн тоо: 42691 Нийтийн

Энэхүү хичээлээр бид квадрат тэгшитгэлтэй холбогдолтой шийдийг олох томьёо, Виетийн терем, квадрат гурван гишүүнтийг үржвэрт задлах талаар авч үзэх болно.
хэлбэрийн тэгшитгэлийг квадрат тэгшитгэл гэдэг. a, b тоонуудыг үл мэдэгдэгчийн коэффициентүүд харин cсул гишүүн гэдэг. a≠0 байх илэрхийллийг квадрат гурван гишүүнт гэнэ.

  Нээгдсэн тоо: 7306 Нийтийн

Тэнцэтгэл бишийг бодох бодлого элсэлтийн ерөнхий шалгалтанд орж ирэх нь гарцаагүй. Олон гишүүнт, логарифм, тригнометр, рационал, ирррационал гэх мэтээр тэнцэтгэл бишүүд олон төрлийнх байдаг. Сурагчид тэнцэтгэл биш тэр тусмаа иррационал тэнцэтгэл бишийг бодохдоо тодорхой хүндрэлтэй тулгардаг тул энэ хичээлээр иррационал тэнцэтгэл бишийг бодох тухай авч үзье. Язгуур доор функцыг агуулсан тэнцэтгэл бишийг иррационал тэнцэтгэл биш гэдэг. Хамгийн ихээр тохиолддог иррационал тэнцэтгэл бишийн хэлбэрүүд тэдгээрийн бодолтын талаар авч үзье.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 150

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 196

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124