Логарифм тэгшитгэлийг бодох

Энэ хичээлээр логарифм тэгшитгэлүүдийг бодох аргуудын талаар авч үзнэ. Хувьсагч утга нь логарифмын тэмдэгт байрлах тэгшитгэлийг логарифм тэгшитгэл гэдэг. Жишээ нь
Логарифмын үндсэн адитгал, чанаруудын талаар Логарифм хичээлээс үзээрэй. Үүнээс гадна логарифм тэгшитгэлүүдийг бодож сурахад Үндсэн томьёонуудыг мэддэг байх хэрэгтэй. Логарифм тэгшитгэлийг бодох үндсэн дүрэм бол

  • Логарифмын суурь тэгээс их ба нэгтэй тэнцүү биш байх ёстой
  • Логарифм доорх илэрхийлэл тэгээс их байх ёстой. Өөрөөр хэлбэл эерэг байна.
  • Тэгшитгэлийн шийд логарифмын тодорхойлогдох мужид харьяалагдаж байх ёстой

гэдгийг байнга санах явдал юм. За ингээд логарифм тэгшитгэлүүдийг бодох аргуудтай танилцая.

Нэг. Логарифмын тодорхойлолтоор бодогдох тэгшитгэлүүд

Ийм төрлийн тэгшитгэлүүд ерөнхий хэлбэртэй байна. Жишээ нь  

Бодлого 7.051
тэгшитгэлийг бод.

Бодолт

Хоёр. Үндсэн чанаруудыг ашиглан бодогдох тэгшитгэлүүд

Логарифмын үндсэн чанаруудад

  1. Үржвэрийн логарифм тэдгээрийн логарифмын нийлбэртэй тэнцүү
  2. Ноогдворын логарифм хүртвэрийн болон хуваарийн логарифмын ялгавартай тэнцүү
  3. Логарифм доторх илэрхийлэлийн зэргийг логарифмын тэмдгээс гаргах ба оруулж болно.

Эдгээр чанарыг тэгшитгэл бодоход өргөн ашигладаг тул цээжээр мэдэж байх хэрэгтэй. Жишээ авч үзье.

Бодлого 7.052
тэгшитгэлийг бод.

Бодолт

Гурав. Логарифмыг хасах

Арга нь ижил суурьтай логарифм доорх тоонууд тэнцүү байна гэсэн чанар дээр үндэслэнэ. Эндээс тэгшитгэлийн тэнцүүгийн тэмдгийн хоёр талд ижил суурьтай логарифм байвал тэдгээрийн доорх илэрхийллүүдийг тэнцүүлэн бодно. Ингэхдээ тэгшитгэлийг бодох дүрмээ санаж байх хэрэгтэй.

Бодлого 7.053
тэгшитгэлийг бод.

Бодолт

Дөрөв. Орлуулах арга.

Тэгшитгэлүүдийг бодоход өргөнөөр ашигладаг универсаль арга. Аргыг хэрэглэх тохиолдлуудыг жишээн дээр авч үзье.

Бодлого 7.054
тэгшитгэлийг бод.

Бодолт

Аргыг хэрэглэхийн өмнө анхдагч тэгшитгэлд логарифмын чанар, тохирох томьёонуудыг ашиглан урьдчилан зохих хувиргалтыг хийх шаардлага гарч болно. Жишээ нь

Бодлого 7.055
тэгшитгэлийг бод.

Бодолт

Бодлого 7.056
тэгшитгэлийг бод.

Бодолт

Тав. Ижил суурьт шилжүүлэн бодох

Энэ арга нь томьёог ашиглан тэгшитгэлийн гишүүдийг ижил суурьт шилжүүлэн бодох юм. Олон тооны тэгшитгэлийг энэ томьёог ашиглан ижил суурьт шилжүүлээд цаашид бидний үзсэн аргуудыг ашиглан боддог тул томьёог цээжлэх хэрэгтэй.

Бодлого 7.057
тэгшитгэлийг бод.

Бодолт

Зургаа. Логарифмчлах арга.

Суурь болон зэрэг илтгэгчид үл мэдэгдэгч агуулагдсан тэгшитгэлийг бодохдоо логарифмчлах аргыг ашигладаг. Хэрвээ зэрэг илтгэгчид логарифм байвал тэгшитгэлийн хоёр талыг зэрэгт байгаа логарифмын сууриар логарифмчилна. Жишээ авч үзье.

Бодлого 7.058
тэгшитгэлийг бод.

Бодолт

Долоо. Тусгай томьёог ашиглах арга.

гэсэн томьёо байдаг. Өөрөөр хэлбэл аливаа тооны зэрэгт байгаа логарифм доорх тоо болон суурийг солин бичиж болно гэсэн үг. Энэ томьёо сурах бичгүүдэд нэг их тааралдаад байдаггүй тул шууд цээжлээд аваарай.

Бодлого 7.059
тэгшитгэлийг бод.

Бодолт

Найм. Хоёрдугаар эрэмбийн нэг төрлийн тэгшитгэлийг бодох

Ийм төрлийн тэгшитгэлийг бодохдоо аль нэг 2-р эрэмбийн гишүүнд тэгшитгэлийн бүх гишүүдийг хуваагаад дараа нь шинээр хувьсагч оруулан квадрат тэгшитгэл болгон боддог. Квадрат тэгшитгэлээ бодоод шийдийг орлуулгадаа буцаан тавих замаар анхны тэгшитгэлийн шийдийг олно.

Бодлого 7.060
тэгшитгэлийг бод.

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 687 Бүртгүүлэх

Алгебр үзэж эхлэж байгаа сурагчдад тохиолддог эхний хүндрэл үсгүүд орж ирэх дараагийнх нь хаалт нээх байдаг. Хаалтыг алгебрийн илэрхийлэлүүдэд ихээр ашигладаг тул Алгебрийн илэрхийллүүд сэдвийн бодлогуудыг бодох явцад аяндаа цээжлэгдэх болно. Алгебрийн дүрэм, тоерем, томьёонуудыг шууд цээжлэх гэснээс илүү бодлогуудад ашиглан хэрэглэвэл илүү хурдан тогтоодог.
Хаалт нээх гэдэг бол хаалттай бичигдсэн илэрхийллийг түүнтэй тэнцүү хаалтгүй илэрхийллээр солихыг хэлнэ.

  Нээгдсэн тоо: 5096 Нийтийн

Математикийн бодлого бодоход томьёонууд чухал үүрэгтэй гэдгийг бүгд мэддэг. Ерөнхий боловсролын сургуулийн математикийн хичээлийн агуулгад хамаарагдах томьёонууд нилээд олон тооны боловч бодлого бодоход эдгээрийн цөөн хэсгийг нь илүү ихээр ашигладаг. Жишээлбэл үржүүлэхийг хураангуй томьёонууд, квадрат тэгшитгэлийн шийдийг олох, Виетийн тоерем, прогрессийн томьёонууд, Пифагор, синус, косинусын теоремууд гээд бараг тогтмол ашигладаг томьёонуудыг дурдаж болно.

  Нээгдсэн тоо: 3101 Бүртгүүлэх

Бид өмнөх хичээлийн сүүлд 3ax+9x-8x-24 илэрхийллийг үржвэрт задлах гээд ерөнхий үржигдхүүн олохгүй мухардал орсон билээ. Аргуудыг дарааллынх нь дагуу хэрэглэхийг илүү гэдгийг Бодлого бодож сурах нь I хичээлд дурдсан. Илэрхийллийг эхний арга буюу ерөнхий үржигдхүүнийг хаалтнаас гаргах аргаар эмхэтгэж болохгүй байгаа тул 2-р арга бүлэглэхийг хэрэглэх гээд үзье.

  Нээгдсэн тоо: 2471 Төлбөртэй

Математикийн элсэлтийн шалгалтанд геометрийн байгуулалт хийх бодлого заавал орж ирдэг. Бодлогууд ихэнхдээ нөхөх хэсэгт ордог бөгөөд зургийг хир зөв гаргаснаас амжилт ихээхэн шалгаалах болно. Нөхөх хэсгийн бодлогын оноо өндөр байдаг. Геомтрийн байгуулалт дээр сурагчид ерөнхий дүрсээ зөв зурсан хэдий ч цаашхи байгуулалт ялангуяа огтлолыг хийхдээ ихээхэн хүндрэлтэй тулдаг. Иймд энэ хичээлээр байгуулалт хийхэд төвөгтэйд орох пирамидын огтлолыг хэрхэн байгуулахыг авч үзэх болно. Сайн зөв зурсан зургаас бодлогын хариуг хэмжээд олчих боломжтой шүү.
Пирамидын огтлолыг байгуулах аргын тодорхой жишээн дээр авч үзцгээе. Пирамидад паралель хавтгайнууд байдаггүй болохоор хавтгайн ирмэгтэй зүсэгч хавтгай огтлолцох шугамыг байгуулахдаа энэхүү ирмэг орших хавтгай дээрх хоёр цэгийг дайрсан шулууныг татах аргыг голдуу хэрэглэдэг.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 6

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 9

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 12

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 13

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 12

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 16

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 22

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 21

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 19

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 995

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2217

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 547