Жишээ өргүүд /Дараа/

Дараан дахь шатрууд , Дарааны нүдэн дэх солилцооны комбинац , Дарааны элементүүд, тоглолтын аргачлал хичээлүүдэд дарааны дараа гэж юу болох түүний үр дагавар, дараанд орсон шатруудыг чөлөөлөх тоглолтын аргачлалуудын талаар үзсэн. Нимцович "Миний систем" номондоо түүний онол бодит тоглолтын үед хэрхэн ашиглагдаж байгааг үзүүлсэнг энэ удаа толилуулах болно. Та шатар сонирхдог эсхүл шатарт суралцаж байгаа бол шатрын онолын мэдлэгээ тогтмол хөгжүүлэн баяжуулж чадвал илүү үр дүнд хүрнэ.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 669 Төлбөртэй

Гарааны онолыг сайн судалбал таны тоглолтод мэдэгдхүйц дэвшил гарах болно. 1. d4 гэж бэрсний хүүгээ түлхэн эхлүүлсэн гараанд хуучин энэтхэг хамгаалалтыг ихээр хэрэглэдэг. Гараа Земишийн систем, фианкетто, сонгодог систем гээд олон хувилбартай бөгөөд энэ удаад гарааны Петросяний системийг авч үзье.

  Нээгдсэн тоо: 353 Төлбөртэй

Орчин үед бэрсний гамбитийн эсрэг маш өргөнөөр ашигладаг хамгаалалтын нэг бол Грюнфельдийн хамгаалалт. Иймээс шатар сонирхогчид, эхлэн суралцагчид хамгаалалтын системийн сайтар судлан суралцахыг зөвлөе. Жишээнд мастеруудын төрөл бүрийн шатны тэмцээнд тоглосон өргүүд орсон тул нүүдэл бүрийг сайн судлан ойлгон авахыг оролдоорой. Энэ удаад Грюнфельдийн хамгаалалтын жишээ өргүүдээс үргэлжлүүлэн танилцуулъя.

[Event "Минск, 1987."] [White "Юсупов"] [Black "Цешковский"] 1. d4 Nf6 2. c4 g6 3. Nc3 d5 4. cxd5 Nxd5 5. e4 Nxc3 6. bxc3 Bg7 7. Bc4 O-O 8. Ne2 c5 9. O-O Nc6 10. Be3 Na5 11. Bd3 b6 12. Rc1 ({хүүний хаяаг авах нь цагаанд ашиггүй.} 12. dxc5? bxc5 13. Bxc5 Qc7 14. Bd4 e5 15. Be3 Nc4 {-ийн дараагаар Роха - Керес (1964/65) нарын өрөгт хар сайн нөхөөсийг авсан.}) (12. f4?! cxd4 13. cxd4 f5! {хувилбарт харын сонгосон нүүдлийн дарааллын оновчтой нь илэрнэ. Цагаан} 14. exf5 ({харин} 14. Qe1 e6 15. Rd1 Bb7 {??? дараачаар хар сайн тоглолттой. (Хольм - Пршибыл, 1974)}) 14... Bxf5 15. Bxf5 gxf5 16. Ng3 {гэж үргэлжлүүлж чадахгүй. d4 хүү сул.}) ({өрөгт хийгдсэн нүүдлээс гадна} 12. Qd2 {гэж бас тоглодог.}) 12... Qc7 ({хувилбарын санаанд илүү тохирох нь} 12... Bb7 {гээд цааш} 13. d5 c4! 14. Bc2 e6 {дараагаар нарийн тоглолттой.}) 13. Qd2 ({энд} 13. f4 {гэж тоглож болно.} f5 {-д} 14. exf5 Bxf5 15. Bxf5 gxf5 16. dxc5! Rad8 17. cxb6 axb6 18. Bd4 {гээд цагаан давуутай. (Спасский - Шмидт, 1968)}) 13... Bb7 14. Bh6 Rad8 15. h4! Qd6?! {сайнгүй хариулт.} ({хүчтэй нь} 15... Nc6 {гээд} 16. d5 Ne5 {-ын дараа Юсуповийн бодлоор цагаан нилээд илүү байна. Гэхдээ удаан тоглолт бий.}) 16. d5 c4 (16... e6 {гэвэл} 17. c4!) 17. Bc2 e6?! {тоглолтыг задлах нь цагаанд ашигтай.} ({Юсупов} 17... e5 {гэж хориглон тоглохыг зөвөлсөн.}) 18. Bxg7 Kxg7 19. f4! f5 (19... exd5 {гэвэл цагаан} 20. e5! Qe7 21. h5 {гээд хүчтэй дайралттай.}) 20. Nd4! fxe4 21. dxe6 Nc6 {оройтсон.} 22. f5! {цагааны дайралтыг зогсоохгүй.} Nxd4 23. cxd4 Qe7 (23... Qxd4+ {гэвэл} 24.Qxd4+ Rxd4 25. e7 Re8 26. Ba4 {гээд шууд хожигдоно.}) 24. Ba4! {шийдвэрлэх нүүдэл.} Rxf5 (24... gxf5 {гэвэл} 25. Qg5+) ({эсхүл} 24... Rd5 25. fxg6 hxg6 26. Rxf8 Qxf8 27. Rf1 Rf5 28. Rxf5 {гээд дуусна.}) 25. Rxf5 gxf5 26. Qf4! Bd5 27. Qe5+ Kg6 ({эсхүл} 27... Qf6 28. e7!) (27... Kg8 {гэвэл өрөгт хийгдсэн} 28. Rc3 {шийднэ.}) 28. Rc3 f4 29. h5+! {гээд хар буусан.}

  Нээгдсэн тоо: 1863 Төлбөртэй

Шатар эхлэн суралцагчид гаргадаг алдаануудын талаар энэ хичээлд авч үзье. Эдгээр алдаануудыг хийхгүй байхын тулд тэдгээрийг мэддэг байхгүй бол хийсээр л байх болно. Иймд хичээлийн материалыг сайн судлаад алдаануудын учир утгыг сайн ойлгоод аль болохоор гаргалгүй тоглож сурахыг хичээгээрэй.

  Нээгдсэн тоо: 1527 Төлбөртэй

1824 онд шотландын шатарчид төвийн эртлэн урагшлалтыг амжилттай хэрэглэсэн Эдинбург -  Лондонгийн шатарчдын захидлаар тоглогдсон өргүүдээс гараа нэрээ авсан. Гэхдээ гарааны тухай анхлан 1750 онд Италийн мастер Эрколе дель Риогийн бүтээлд дурдагдсан бөгөөд гарааны анхны судалгааг 1763 онд Италийн Ж. Лолли "Шатарын тоглоомын онол, практикийн ажиглалт" бүтээлдээ хийсэн байдаг. XIX -р зуунд Шотланд өрөгийн боловсруулалтыг В. Стейниц, Г.Стаунтон, Л.Паульсен нар хийн сүүлд А. Алехин, С.Тартаковер нар оролцсон. Гарааны орчин үеийн онолд Г. Каспаров их хувь нэмэр оруулсан. Тэрээр 1990 онд шотланд гарааг А. Карповийн эсрэг хоёр удаа хэрэглэсэн.
Орчин цагт тэмцээнүүдэд гарааг өргөн хэрэглэдэг.

Цэсийг нээх хаах ажиллагааг хариуцах компонентийг боловсруулсан тул энэ хичээлээр програмийн удирдах цэсийг…

Нээгдсэн тоо : 6

 

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 13

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 15

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 17

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 14

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2220

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 550