Математикийн хичээлүүд ( 285 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 4335 Төлбөртэй

Тохиолдол 1.

a, b, c - талууд өгөгдсөн. A, B, C - өнцгүүдийг олох.

  • Косинусын теоремоор аль нэг өнцгийг олно.
  • Синусын теоремоор хоёрдох өнцгийг олно.
  • Гуравдахь өнцгийг дараах томьёогоор олно.

 

Нээгдсэн тоо: 7485 Нийтийн

Тэмдэглэгээ

a, b, c - талууд, A, B, C - өнцгүүд, p=(a+b+c)/2 - хагас периметр, h - өндөр, S - талбай, R - багтаасан тойргийн радиус, r - багтсан тойргийн радиус.

Косинусын теорем

Нээгдсэн тоо: 35680 Нийтийн

Гаргалтын томьёо

Эдгээр томьёог

  • 90° их өнцгийн тригнометрийн функцийн тоон утгыг олох;
  • Энгийн илэрхийэл болгож хувиргалт хийхэд;
  • 360° их болон сөрөг утгатай өнцгийг хувиргахад;

ашигладаг.

Нээгдсэн тоо: 3062 Төлбөртэй

Тригнометрт дурын өнцгийн / хурц, мохоо, эерэг, сөрөг / хувьд үнэн байх дүрмийг гаргахын тулд нэгж тойрогийг байгуулах хэрэгтэй. Өөрөөр хэлбэл радиус нь 1 тэнцүү тойрог. / Зур. 3 /

Нээгдсэн тоо: 16694 Бүртгүүлэх

Хоёр талаар нь бодох.

Тэгш өнцөгт гурвалжны хоёр тал нь өгөгдсөн тохиолдолд гуравдахь талыг Пифагорын томьёогоор тооцож олно. Хурц өнцгийг ямар хоёр тал нь өгөгдсөнөөс хамаарч тохирох тригнометрийн функцийг хэрэглэнэ. Жишээ нь a, b катетууд өгөгдсөн бол A өнцгийг олох юм.

Жишээ 1
Тэгш өнцөгт гурвалжны катет a=0.324, гипотенуз c=0.544 бол b катет ба A, B өнцгийг ол.

Бодолт
Катет нь Өнцөг нь буюу болно.

Нээгдсэн тоо: 3922 Бүртгүүлэх

Тэгш өнцөгт гурвалжны талуудын харьцааг хурц өнцгийн тригнометрийн функцүүд гэдэг. / Зур. 2 /

Нээгдсэн тоо: 8551 Бүртгүүлэх

Бид хавтгайн геометрт нумын урт l, радиус r ба харгалзах өнцөг α -нууд нь α=l/r гэсэн харьцаатай байдгийг үзсэн. Энэ томьёо нь өнцгийн радиан хэмжээг тогтоох үндэс болно. Хэрвээ l=r бол α=1 болох бөгөөд энийг α өнцөг 1 радиантай тэнцүү гээд α=1 рад. гэж тэмдэглэнэ. Эндээс дараах тодорхойлолт гарна.
Нумын урт ба радиус нь тэнцүү төв өнцгийг радиан гэнэ. (AmB=AO) /Зур. 1/ Иймээс өнцгийн радиан хэмжээс гэдэг нь дурын радиусаар татаж гаргасан өнцгийн талуудын дунд орших нумын уртыг нумын радиуст харьцуулсан харьцааг хэлнэ.

Нээгдсэн тоо: 42740 Нийтийн

Тэмдэглэгээ:

V - эзэлхүүн ; S - суурийн талбай ; - хажуу гадаргуун талбай; P - бүтэн гадаргуу; h - өндөр; a, b, c - тэгш өнцөгт паралелпепидын хэмжээсүүд; A - зөв ба зөв зүсэгдсэн пирамидийн апофем; L - конусын бүрдүүлэгч; p - периметр эсвэл суурийн тойргийн урт; r - суурийн радиус; d - суурийн диаметр; R - шаарын радиус; D - шаарын диаметр;  1 ба 2 индексүүд нь зүсэгдсэн призм ба пирамидийн радиус, диаметр, периметр, дээд доод сууриудтай холбоотой.

Нээгдсэн тоо: 2468 Нийтийн

Нэг нь нөгөөгийнхөө бүх шугаман хэмжээсийг нэг ижил харьцаагаар исэхгэх юмуу багасгах замаар гаргасан хоёр биетийг төстэй биет гэнэ. Автомашин түүний модел хоёр нь төстэй биетүүд.

Биетийн төстэй байх шинжүүд:

  • Хоёр цилиндр эсвэл конусын сууриудын радиус нь өндөртэйгээ порпорционал байвал төстэй байна
  • Хоёр ба түүнээс дээш биетүүдийн хавтгай болон муруй гадаргуунуудын талбайнууд нь дурын харгалзах хэрчмийн квадратад порпорционал байвал тэдгээр нь төстэй байна.
  • Хоёр ба түүнээс дээш биетүүдийн эзэлхүүнүүд нь дурын харгалзах хэрчмийн кубэд порпорционал байвал тэдгээр нь төстэй байна.

Нээгдсэн тоо: 6113 Төлбөртэй

Биет дээр орших E цэг бүрт энэ биет дээр E’ гэсэн цэг олдоод EE’ хэрчим нь S хавтгайтай перпендикуляр бөгөөд хавтгайгаар (EA=AE’) гэсэн тэнцүү хэсэгт хуваагдаж байвал геометрийн дүрсийг S хавтгайгаар тэгш хэмтэй /Зур. 104/ гэнэ. Нарийн утгаараа тэгш хэмтэй дүрс болон биетүүд нь өөр хоорондоо тэнцүү биш байдаг.
Жишээ нь зүүн гарын бээлий нь баруун гарт таардаггүй г.м. Эдгээрийг толин тусгалын тэнцүү гэдэг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 231

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 321

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 279

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 379

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 424

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 449

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 518

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 597

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 624

 
Энэ долоо хоногт

Тэмцээнд 16 шатарчин оролцсон. Нэгийн давааны хуваарийн хичнээн хувилбар байж болох вэ? / Хуьаарьт дор хаяж нэг өрөгт тоглох хүмүүс нь ялгаатай бол хувилбар гэж тооцно. Тоглох өнгө, ширээний дугаарыг тооцохгүй/

Нээгдсэн тоо : 1299

 

Нээгдсэн тоо : 1069

 

prob02_187_01 илэрхийллийг хялбарчил.

Нээгдсэн тоо : 179