Математикийн хичээлүүд ( 278 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 41844 Нийтийн

Тэмдэглэгээ:

V - эзэлхүүн ; S - суурийн талбай ; - хажуу гадаргуун талбай; P - бүтэн гадаргуу; h - өндөр; a, b, c - тэгш өнцөгт паралелпепидын хэмжээсүүд; A - зөв ба зөв зүсэгдсэн пирамидийн апофем; L - конусын бүрдүүлэгч; p - периметр эсвэл суурийн тойргийн урт; r - суурийн радиус; d - суурийн диаметр; R - шаарын радиус; D - шаарын диаметр;  1 ба 2 индексүүд нь зүсэгдсэн призм ба пирамидийн радиус, диаметр, периметр, дээд доод сууриудтай холбоотой.

Нээгдсэн тоо: 2242 Нийтийн

Нэг нь нөгөөгийнхөө бүх шугаман хэмжээсийг нэг ижил харьцаагаар исэхгэх юмуу багасгах замаар гаргасан хоёр биетийг төстэй биет гэнэ. Автомашин түүний модел хоёр нь төстэй биетүүд.

Биетийн төстэй байх шинжүүд:

  • Хоёр цилиндр эсвэл конусын сууриудын радиус нь өндөртэйгээ порпорционал байвал төстэй байна
  • Хоёр ба түүнээс дээш биетүүдийн хавтгай болон муруй гадаргуунуудын талбайнууд нь дурын харгалзах хэрчмийн квадратад порпорционал байвал тэдгээр нь төстэй байна.
  • Хоёр ба түүнээс дээш биетүүдийн эзэлхүүнүүд нь дурын харгалзах хэрчмийн кубэд порпорционал байвал тэдгээр нь төстэй байна.

Нээгдсэн тоо: 5809 Төлбөртэй

Биет дээр орших E цэг бүрт энэ биет дээр E’ гэсэн цэг олдоод EE’ хэрчим нь S хавтгайтай перпендикуляр бөгөөд хавтгайгаар (EA=AE’) гэсэн тэнцүү хэсэгт хуваагдаж байвал геометрийн дүрсийг S хавтгайгаар тэгш хэмтэй /Зур. 104/ гэнэ. Нарийн утгаараа тэгш хэмтэй дүрс болон биетүүд нь өөр хоорондоо тэнцүү биш байдаг.
Жишээ нь зүүн гарын бээлий нь баруун гарт таардаггүй г.м. Эдгээрийг толин тусгалын тэнцүү гэдэг.

Нээгдсэн тоо: 9693 Нийтийн

Орой бүрд нь ижил тоотой талууд нийлдэг, бүх тал нь хоорондоо тэнцүү зөв олон өнцөгтөөс бүрдсэн олон талтыг зөв олон талт гэнэ.
Зөвхөн таван гүдгэр, дөрвөн гүдгэр биш зөв олон талт мэдэгдэж байгаа. Гүдгэр зөв олон талтууд:

  • тетраэдер / 4 талт  Зур. 99/
  • куб буюу гексаэдер / 6 талт Зур. 100/
  • октаэдер / 8 талт  Зур. 101/
  • додекаэдер / 12 талт  Зур. 102/
  • икосаэдер / 20 талт  Зур. 103/

Нээгдсэн тоо: 2550 Нийтийн

Битүүрсэн чиглүүлэгчтэй шовгор гадаргуун зурвасаар хязгаарлагдсан огторгуйн хэсгийг биетийн өнцөг гэнэ. Биетийн өнцөг нь бөөрөнхий гадаргуун (ABCDEF) /Зур. 98/ хэсгээр хэмжигдэнэ.

Биетийн өнцгийг (ABCDEF) талбай, шаарын радиусын квадратын харьцаагаар хэмжинэ.

Нээгдсэн тоо: 2343 Бүртгүүлэх

Ямар нэгэн муруй хавтгай дээр /Зур. 94/ A, B, C гэсэн гурван цэг байна гэж үзээд эдгээр цэгүүдийг дайруулан P огтлогч хавтгайг татъя. B, C цэгүүдийг A цэг рүү хоёр өөр чиглэлээр хөдөлгөе. Тэгвэл P хавтгай нь B, C цэгийг хаана авсан, A цэг рүү явж байгаа замаас хамаарахгүйгээр ямар нэгэн Q хязгаарын байрлал руу тэмүүлэх болно. Q хавтгайг A цэг дэх шүргэгч хавтгай гэнэ.
Гадаргуун зарим цэгүүд шүргэгч хавтгайгүй байж болно. Жишээ нь: Конусын оройд шүргэгч хавтгай байхгүй.

Бөөрөнхий гадаргуун шүргэгч P хавтгай нь /Зур. 95/ шүргэлтийн цэг A -д татсан OA радиустай перпендикуляр байна. Бөөрөнхий гадаргуу ба шүргэгч хавтгай нь шүргэлтийн цэг гэсэн ганцхан ерөнхий цэгтэй байдаг.

Нээгдсэн тоо: 5755 Нийтийн

Бөөрөнхий гадаргуу гэдэг нь огторгуйд байрлах O гэсэн нэг цэгээс ижил зайд орших цэгүүдийн олонлог / цэгийн геометр байрлал / юм. O цэгийг бөөрөнхий гадаргуун төв гэнэ. /Зур. 90/ AO радиус, AB диаметрийг тойрог дээрхтэй адилаар тодорхойлно.
Бөөрөнхий гадаргуугаар хязгаарлагдсан биетийг шаар /бөмбөлөг/ гэнэ. Шаарын бүх хавтгай зүсэлт нь дугуй байна. /Зур. 90/ Хамгийн том дугуй нь шаарын төвийг дайрсан зүсэлтээр үүсэх бөгөөд том дугуй гэж нэрлэнэ. Дурын хоёр том дугуй шаарын диаметрээр огтлолцоно. /Зур. 91/ Шаарын диаметрын төгсгөлд байрлах хоёр цэгийг дайруулан хязгааргүй олон том дугуй татаж болно.

Нээгдсэн тоо: 4264 Бүртгүүлэх

Өгөгдсөн MN шугамын /Зур. 85/ дагуу AB шулуун хөдөлгөөнгүй S цэгийг дайран шилжихэд шовгор гадаргуу үүснэ. MN шугамыг чиглүүлэгч гэнэ. AB шулууны хөдөлгөөний үед үүсэх A’B’, A”B”, … г.м /Зур. 85/ шулуунуудыг шовгор гадаргууг бүрдүүлэгч, S цэгийг орой гэдэг. Шовгар гадаргуу нь SA ба SB цацрагаар хоёр хэсэг үүсдэг. Шовгор гадаргуу гэж ихэнхдээ нэг хэсгийг нь авч үздэг.

Нээгдсэн тоо: 6067 Нийтийн

Өгөгдсөн MN муруйн /Зур. 82/ дагуу AB шулуун өөрийн чиглэлийг хадгалан шилжихэд цилиндр гадаргуу үүснэ. MN муруйг чиглүүлэгч гэнэ. AB шулууны хөдөлгөөний үед үүсэх A’B’, A”B”, …  г.м  /Зур. 82/ шулуунуудыг цилиндр гадаргууг бүрдүүлэгч гэдэг.

Нээгдсэн тоо: 7089 Төлбөртэй

Олон өнцөгт хавтгайн хэсгүүдээс бүрдсэн биетийг олон талт гэнэ. Эдгээр олон өнцөгтийг талууд, тэдгээрийн талуудыг ирмэгүүд, оройнуудыг нь олон талтын оройнууд гэнэ. Хоёр оройг холбосон нэг тал дээр оршдоггүй хэрчмийг олон талтын диагнал гэдэг. Бүх диагнал нь олон талт дотроо байдаг биетийг гүдгэр олон талт гэнэ.

Призм

Призм гэдэг нь /Зур. 79/ хоёр тал  нь ( призмийн суурь) ABCDEF ба abcdef гэсэн паралел ижил олон өнцөгт , бусад талууд нь шулуунуудтай паралел паралелграм хавтгайнуудаас бүрдсэн олон талт юм. паралелграмуудыг хажуу талууд шулуунуудыг хажуу ирмэгүүд гэдэг. Нэг сууриас нөгөө суурьт буулгасан дурын перпендикуляр нь призмийн өндөр болно.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 12

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 14

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 15

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 13

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 21

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2219

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 549