Математикийн хичээлүүд ( 258 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 1829 Төлбөртэй

Өмнөх хичээлүүдээр бид ерөнхий үржигдхүүнийг хаалтнаас гаргах, бүлэглэх гэсэн хоёр аргыг сурсан. Энэ удаа үржүүлэхийн хураангуй томьёог ашиглах хүчирхэг аргатай танилцах болно. Үүнийг сурагч бүр мэднэ. Томьёонуудыг ч сайн мэднэ гэж бодож байна. Тэгвэл энэ тухай ярих хэрэг байгаа юм уу гэсэн асуулт гарч болох юм. Томьёонуудыг математикт маш өргөнөөр ашигладаг. Тэдгээрийг үржүүлэх, бутархайг эмхэтгэх, тэгшитгэл бодох, интеграл тооцох гээд хэрэглэхгүй газаргүй. Иймээс эдгээр томьёонууд хаанаас гарч ирсэн, юунд хэрэгтэй, хэрхэн тогтоох, яаж хэрэглэх гээд шуудхан хэлэхэд авч үзэх зүйлүүд байна аа. Сурагчид томьёог сайн цээжилсэн мөртлөө бодлого дээр очоод бараг мэдэггүй хүн шиг болдог. Өөрөөр хэлбэл ашиглах тал дээр ноотой.

Нээгдсэн тоо: 8777 Нийтийн

Прогресстой холбоотой бодлогууд элсэлтийн ерөнхий шалгалтанд ирэх нь бараг уламжлал. Бид энэ хичээлээр прогресстой хамааралтай бодлогуудын талаар авч үзэх болно. Үндсэн ойлголтыг Арифметик ба геометр прогресс хичээлээс аваарай. Прогрессын бодлогуудыг бодоход холбогдох томьёонуудыг мэдэж байхад тийм хүнд биш. Тригнометрийн тэгшитгэл, алгебрийн тэгшитгэл, илэрхийлэл хялбарчлах гэх мэтийн бодлогыг бодох тогтсон аргачлал, дүрэм байдаг бол прогресстой холбоотой бодлогыг бодох тодорхой аргачлалууд гэж байдаггүй бодлогын нөхцөлд тулгуурлан томьёогоо ашиглаад явдаг.

Нээгдсэн тоо: 2207 Төлбөртэй

Элсэлтийн ерөнхий шалгалт дээр тодорхой бус интегралыг олох бодлогууд ирсэн байдаг. Гэхдээ ийм төрлийн бодлого цөөн тооны байдаг ч ЕБС-ийн математикийн хичээлийн программд багтдаг сэдэв учраас тодорхой бус интегралыг бодож чаддаг байх хэрэгтэй. Их дээд сургуулийн эхний курст яг энэ сэдвээр дээд математикийн хичээлүүдтэй тулах учраас хичээлд үзэх аргуудыг мэдэж байх нь шалгалт гэлтгүй цаашдаа хэрэг болно.
Ерөнхий шалгалтын бодлогуудад байгаа тодорхойгүй интеграл олох бодлогууд маш энгийн амархан бараг л хүснэгтийн интеграл байсан гэхэд хилсдэхгүй. Ийм хөнгөн даалгавар дээр сэдвийн аймшигтай нэрнээс сүрдээд оноо алдана гэдэг байж болохгүй.

Нээгдсэн тоо: 2613 Төлбөртэй

Хичээлээр бид тригнометрийн тэгшитгэлүүдийн үндсэн төрлүүд тэдгээрийг бодох аргачлалуудын талаар үзнэ. Сэдэв нь элсэлтийн шалгалтанд оролцогчдод хамгийн төвөгтэйд тооцогдох нэгэн. Элсэлтийн ерөнхий шалгалтанд тригнометрийн тэгшитгэл орж ирэх нь гарцаагүй. Сурагчид энэ сэдвийг сайн ойлгоогүйгээс болж ийм төрлийн бодлогоос оноо алдах тохиолдол маш элбэг. Иймээс тригнометрийн тэгшитгэлүүдийг бодож сурах хэрэгтэй. Хичээлд үзэх зарим нэгэн (жишээ нь орлуулах, үржигдхүүнд задлах) аргууд бол математикийн бусад сэдвүүдэд ашигладаг ерөнхий универсал аргууд болно. Бусад нь зөвхөн тригнометрт хэрэглэдэг аргууд байгаа.

Нээгдсэн тоо: 11324 Нийтийн

Интеграл, уламжлал хоёр мат анализд голлох байр суурийг эзэлдэг тухай би өмнө нь Уламжлалыг тооцох хичээлд дурдаж байсан. Интегралыг олох үйлдлийг интегралчлах гэж нэрлэдэг. Хичээлийн материалыг сайн ойлгохын тулд та уламжлалыг олох наад захын болбол дунд хэмжээний мэдлэгтэй байх хэрэгтэй. Иймд эхлээд Уламжлалыг тооцох, Дифференциалчлах дүрэм хичээлийг үзэн судалсан байхыг зөвлөе. Интеграл үзэх гэж байж юун уламжлал яриад байгаад гайхаж магадгүй. Тэгвэл уламжлал олох (дифференциалчлах), тодорхойгүй интегралыг олох (интегралчлах) хоёр нь нэмэх, хасах эсхүл үржих, хуваахын адилаар харилцан эсрэг үйлдлүүд юм. Эндээс нэг үйлдлийг мэдэхгүйгээр /өөрөөр хэлбэл уламжлалыг олох дадлагагүйгээр/ нөгөөд нь хол явахгүй нь ойлгомжтой.

Нээгдсэн тоо: 3048 Бүртгүүлэх

Бид өмнөх хичээлийн сүүлд 3ax+9x-8x-24 илэрхийллийг үржвэрт задлах гээд ерөнхий үржигдхүүн олохгүй мухардал орсон билээ. Аргуудыг дарааллынх нь дагуу хэрэглэхийг илүү гэдгийг Бодлого бодож сурах нь I хичээлд дурдсан. Илэрхийллийг эхний арга буюу ерөнхий үржигдхүүнийг хаалтнаас гаргах аргаар эмхэтгэж болохгүй байгаа тул 2-р арга бүлэглэхийг хэрэглэх гээд үзье.

Нээгдсэн тоо: 3369 Бүртгүүлэх

Уламжлалыг тооцох үйлдлийг дифференциалчлах гэдгийг Уламжлалыг тооцох хичээлд дурдсан. Бид хичээлээр уламжлалын үндсэн жагсаалтын томьёонуудыг уламжлалын тодорхойлолтыг ашиглан хэрхэн гаргаж байгаа талаар үзсэн. Уламжлалын үндсэн жагсаалтын томьёонуудаа цээжилсэн бол одоо функцын уламжлалыг олж сурцгаая. Уламжлалыг тооцох хичээлээс үндсэн жагсаалт болон уламжлал тооцох дүрмийг ашиглан бусад функцийн уламжлалыг олдог тухай та мэдсэн байгаа.

Нээгдсэн тоо: 3915 Бүртгүүлэх

Уламжлал гэж юу болох, түүнийг хэрхэн олох, бодлогод яаж ашиглах зэрэг нь сурагчдад томоохон асуудал үүсгэдэг. Уламжлал нь математик анализын үндсэн ойлголтуудын нэг бөгөөд интегралын хамтаар мат анализд голлох байр суурийг эзэлдэг. Уламжлалыг сайн ойлгосноор их дээд сургуулийн дээд тооны хичээлүүдэд сайн сурах үндэс болохоос гадна элсэлтийн ерөнхий шалгалтын материалд хүндэд тооцогдох бодлогуудыг бодох суурь болно. Элсэлтийн шалгалтанд функцын өсөх буурах үеийг олох, хамгийн их болон бага утгыг тооцох, функцийн графикийн шүргэгчийг олох, функцийн уламжлалыг олох гэх мэтийн олон төрлийн бодлогуудыг уламжлал ашиглан бодоход хүрдэг. Иймд хичээлийн материалыг сайн ойлгон авснаар та элсэлтийн ерөнхий шалгалтанд дор хаяад 2-3 хүндхэнд тооцогдох бодлогыг амжилттай бодох боломжтой болох юм. Хичээлийг үзэж эхлэхийн өмнө Хязгаарыг ойлгох нь хичээлийг сайн үзээд бүрэн хэмжээнд ойлгосон байхыг чухалчлан зөвлөх байна. Учир нь уламжлал гэдэг бол хязгаар юм шүү дээ.

Нээгдсэн тоо: 6945 Төлбөртэй

Илтгэгч тэгшитгэл элсэлтийн ерөнхий шалгалтын материалд багтах нь бараг л гарцаагүй. Иймд төгсөгчид энэ төрлийн тэгшитгэлүүдийг бодох аргуудыг эзэмшсэн байх шаардлагатай. Тогтмол суурьтай зэргийн илтгэгчээр хувьсагч буюу үл мэдэгдэгч агуулагдсан тэгшитгэлийг илтгэгч тэгшитгэл гэдэг. Илтгэгч тэгшитгэлийг бодохдоо сурагчид ихэвчлэн дараах хүндрэлүүдтэй тулгардаг.

  • Илтгэгч тэгшитгэл, тэнцэтгэл биш, тэдгээрийн системийг бодох аргачлалыг нарийн сайн мэдэхгүй
  • Зэргийн чанар, илэрхийлэл хувиргах техникийг сайн эзэмшээгүйн улмаас илтгэгч тэгшитгэл, тэнцэтгэл бишд анхдагч тэгшитгэл болон тэнцэтгэл биштэй эн чацуу биш хувиргалтыг хийх
  • Шинэ хувьсагч /орлуулга/ оруулан бодолтыг хийсний дараа буцаан орлуулга хийхээ мартах

Нээгдсэн тоо: 6907 Нийтийн

Бодлого бодохыг юу гэж ойлгох вэ? Бидний ихэнх нь бодлогыг ухаантай хүмүүс л боддог гэж ойлгоод байдаг. Математикийн шинжлэх ухаанд шийдэгдээгүй асуудлууд олон бий. Эдгээрийн шийдлийг гарган теорем, дүрэм батлах зэрэг нь үнэхээр ухаантай хүмүүсийг ажил. Энэ бол зөвхөн математикийн ухаанд ч биш бүхий л салбарт ийм жамтай. Харин эдгээр суут хүмүүсийн гаргасан шийдлийг хүн бүр өдөр тутмын амьдралдаа байнга ашиглаж байдгаа тэр бүр мэдээд байдаггүй. Жирийн хүмүүсийн хувьд математикийн бодлого бодно гэдэг нь ердөө эрдэмтэн мэргэдийн гаргасан шийдлийг ашиглах л юм. Түүнээс шинээр ямар нэгэн арга зохиогоод шийдэл гаргаад байх ерөөсөө биш. Бодлого бодох гэдэг нь компьютер ашиглах, гар утасны функцээ ажлуулах, машин жолоодохтой ижил ердийн ажил.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 151

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 197

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124