Математикийн хичээлүүд ( 258 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 13943 Нийтийн

Тэгшитгэл зохиож бодох бодлогуудын нэг хэсэг бол ажлын бодлогууд байдаг. Ийм төрлийн бодлогууд шалгалт, шүүлэгт ирэх нь элбэг. Ажлын ямарч бодлогод ажилласан хугацаа, хөдөлмөрийн бүтээмж, нийт ажлын хэмжээ

Ажлын хэмжээ = Ажилласан хугацаа · Хөдөлмөрийн бүтээмж

харьцаагаар илэрхийлэгдэнэ. Ажлын бодлогуудад хамтран гүйцэтгэх, төлөвлөгөөгөөр ажил хийх, даацын гэх мэт төрлүүд голлодог.

Нээгдсэн тоо: 16079 Нийтийн

Хязгаарыг бодох аргууд сэдвээр дахин нэг хичээлийг танилцуулж байна. Энд бид хязгаарыг бодоход гайхамшигт хязгаарыг хэрхэн ашиглах талаар авч үзэх юм. Гайхамшигт хязгаар цөөн тооны байдаг ч оюутан сурагчдад ихэнхдээ нэг ба хоёрдугаар гайхамшигт хязгаарыг ашигладаг. ЕБС-ын хэмжээнд гайхамшигт хязгаарын талаар дэлгэрэнгүй үзээд байдаггүй ч эдгээрийг мэдэж байх нь зарим төрлийн бодлогыг бодолтонд маш хэрэгтэй болдог. Хичээлийг материалыг судлахаасаа өмнө Хязгаарыг ойлгох нь, Хязгаарыг бодох аргууд хичээлүүдийг үзэж судалсан байхыг сануулъя.

Нээгдсэн тоо: 1965 Бүртгүүлэх

Геометрийн бодлогод гурвалжны төстэй чанарыг ашиглах нь ихээр тохиолдоно. Иймээс бид энэ хичээлээр гурвалжны төстэй чанарын талаар авч үзэх болно. Төстэй гурвалжин гэдэг ойлголт үнэндээ бол их энгийн. Ямар нэгэн зүйлийг томруулдаг шилээр харвал түүний бүх хэмжээг порпорцоор хадгалсан хэд дахин томруулсан дүрсийг бид хардаг. Өөрөөр хэлбэл анхдагч зүйлтэй төстэй зүйлийн дүрс гэсэн үг.
Өнцгүүд тэнцүү ба харгалзах талууд нь порпорционал гурвалжингуудыг төстэй гурвалжин гэдэг. Энд тэнцүү өнцгүүдийн эсрэг орших талыг харгалзах талууд гэж нэрлэнэ.

Нээгдсэн тоо: 13730 Бүртгүүлэх

Бид өмнө нь хязгаар гэж юу болох энгийн хязгааруудыг хэрхэн бодох талаар авч үзсэн. Хязгаарыг ойлгох нь хичээлд үзсэн жишээнүүд их энгийн байсан бөгөөд ийм бэлэгүүд практикт ховор тохиолдох тухай дурдсан. Тэгэхлээр энэ хичээлд хязгаарын илүү нарийн төрлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе.

∞/∞ хэлбэрийн тодорхойгүй төрлийн хязгаарыг бодох.

x->∞ байх үед функц нь хүртвэр, хуваардаа олон гишүүнтийг агуулсан хязгааруудыг авч үзье.

Жишээ 1.

хязгаарыг тооцоол.

Нээгдсэн тоо: 3756 Төлбөртэй

ЕБС-ын ахлах ангид математик анализын эхлэл болох хязгаар, уламжлал, интеграл зэрэг сэдвүүдийг эхлэл байдлаар үздэг. Эдгээр сэдвүүдийг сайн ойлгох нь цаашид их сургуульд дээд математикийн хичээлүүдэд амжилттай суралцах үндсэн суурь болдог. Хэдийгээр сэдвүүдийг эхлэлийн хэмжээнд үздэг ч ерөнхий шалгалт дээр дээрх сэдвийг хамарсан бодлогууд тогтмол орж ирсэн байдаг. Сурагчид сэдвүүдийн талаар баттай суурь мэдлэг олж аваагүйн улмаас бодлогыг бодохдоо алдаа гарган оноо алдах үзэгдэл их түгээмэл харагддаг. Сэдвүүд ЕБС-ын математикийн хичээлийн агуулга дотроо арай хүндхэн хэсэгт орох ч утгыг нь зөв ойлгосон тохиолдолд тийм ч аймшигтай зүйлүүд биш. Энэ хичээлээр бид хязгаар гэж юу болох түүнийг хэрхэн ойлгохыг авч үзнэ. Хязгаарыг сайн ойлгосон байхад уламжлал, интегралыг ойлгоход амархан.

Нээгдсэн тоо: 7307 Нийтийн

Тэнцэтгэл бишийг бодох бодлого элсэлтийн ерөнхий шалгалтанд орж ирэх нь гарцаагүй. Олон гишүүнт, логарифм, тригнометр, рационал, ирррационал гэх мэтээр тэнцэтгэл бишүүд олон төрлийнх байдаг. Сурагчид тэнцэтгэл биш тэр тусмаа иррационал тэнцэтгэл бишийг бодохдоо тодорхой хүндрэлтэй тулгардаг тул энэ хичээлээр иррационал тэнцэтгэл бишийг бодох тухай авч үзье. Язгуур доор функцыг агуулсан тэнцэтгэл бишийг иррационал тэнцэтгэл биш гэдэг. Хамгийн ихээр тохиолддог иррационал тэнцэтгэл бишийн хэлбэрүүд тэдгээрийн бодолтын талаар авч үзье.

Нээгдсэн тоо: 1924 Бүртгүүлэх

Кубыг хавтгайгаар зүсэлт хийх нь пирамидын зүсэлтийг бодвол арай энгийн. Өгөгдсөн цэгүүдийн хоёр нь нэг хавтгайд байрлаж байвал тэдгээрийг дайруулан шулуун татаж зүсэгч хавтгайн мөрийг гаргаж болно. Кубын зүсэлтийг байгуулахад зүсэгч хавтгайн мөрийг байгуулах бас нэг боломж байдаг. Паралел хоёр хавтгайг гуравдахь хавтгай паралел шугамуудаар огтолж байгаа тул аль нэгэн талстад зүсэлтийн шугамыг байгуулсан бол нөгөө хавтгайд зүсэлт дайран өнгөрөх цэг олдох бөгөөд бид энэхүү цэгийг дайруулан байгуулсан шулуунтай паралел шулууныг татаж болно. Кубыг хавтгайгаар зүссэн байгуулалтыг хэрхэн үүсгэхийг тодорхой жишээнүүдээр авч үзье.

Нээгдсэн тоо: 8029 Төлбөртэй

Математикт илэрхийлэл гэж юуг хэлэх вэ? Илэрхийлэлд хувиргалт хийх ямар хэрэгтэй вэ? гэсэн асуултууд танд сонин санагдаж магад. Учир нь эдгээр ойлголтууд бол математикийн үндэс юм. Математик бүхэлдээ илэрхийлэл, тэдгээрийн хувиргалтаас бүрдэнэ. Ойлгомжгүй байна уу. Тайлбарлая. Маш нүсэр бичлэгтэй, төвөгтэй жишээ байлаа гэе. Та математикт сайн тул айгаад байх зүйлгүй гэж бодъё. Тэгвэл шууд хариуг нь хэлж чадах уу? Үгүй шүү дээ.
Та энэ жишээг бодох л болно. Мэдээжээр ямар нэгэн дүрмийн дагуу алхам алхамаар жишээг хувирган эмхэтгэл хийнэ. Өөрөөр хэлбэл илэрхийлэлд хувиргалт хийнэ. Эдгээр хувиргалтуудыг хир сайн хийх нь таныг математикт төчнөөн сайныг илтгэнэ. Хэрвээ та хувиргалтыг зөв хийж чадахгүй бол математикт та юу ч хийж дийлэхгүйд хүрнэ. Ийм байдалд орохгүйн тулд илэрхийллийн тухай энэ удаа авч үзье. Илэрхийллийн хувиргалт хийж сурах нь бодлого бодох үндэс. Үүнийг сураагүй бол ямарч бодлогыг бодох талаар санаад ч хэрэггүй. Тэгэхлээр эхлээд математикт илэрхийлэл гэж юуг ойлгох, тоон болон алгебрын илэрхийлэл гэж юу болохыг тодруулъя.

Нээгдсэн тоо: 17006 Нийтийн

Бид өмнө нь Тооноос квадрат язгуур авах талаар үзсэн бол энэхүү нийтлэлээр тооны машин ашиглахгүйгээр куб язгуур авахыг сурцгаах болно. Энд бид зөвхөн натурал тоонуудын хувьд авч үзнэ.

Дээрх тоонуудын язгуурыг цээжээр гаргана гэвэл та хир их хугацаа зарцуулна гэж бодож байна. Хэрвээ та бидний үзэх аргачлалыг хэдэн удаа сайн давтвал ямарч тооны куб язгуурыг тун бага хугацаанд гаргах болно.

Нээгдсэн тоо: 2719 Төлбөртэй

Энэ хичээлд язгуур агуулсан буюу иррационал илэрхийллийг эмхэтгэх хоёр аргын талаар авч үзье. Иррационал илэрхийллийг эмхэтгэх бодлогууд шалгалтанд нилээд түгээмэл ирдэг бөгөөд сурагчид ийм төрлийн илэрхийллийг эмхэтгэхдээ төдийлөн сайн биш байдаг. Иймд энэхүү универсал аргыг сайтар ойлгосон байхад эмхэтгэх боломжтой ямарч төрлийн иррационал илэрхийллийг эмхэтгэж чадах юм.

хэлбэрийн илэрхийллийг эмхэтгэх

Язгуур алгуулсан илэрхийллийн нэг төрөл бол хэлбэрийн бодлого байдаг. Ерөнхий тохиолдолд илэрхийллийг хэлбэрийн хоёр гишүүнтийн квадрат байдлаар хувиргахыг оролдох хэрэгтэй. a, b, c - том тоонууд биш байвал үүнийг амархан хийдэг. Харин a, b, c "эвгүй" өгөгдсөн бол хоёр гишүүнтийн квадратыг ялгаж чадахгүйд хүрнэ.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 151

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 197

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124