Математикийн хичээлүүд ( 285 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 2466 Төлбөртэй

Энэ нийтлэлээр бодит шалгалт дээр ирж байсан тригнометрийн хоёр бодлогын бодолтыг дэлгэрэнгүйгээр тайлбарлах болно. Эдгээр бодлогын бодолтыг сайн судлаад ойлговол тригнометрийн бодлогыг ойлгоход сайн суурь болж чадна. Бодлогын шийдүүдээс өгөгдсөн завсар дахь утгуудыг сонгох нэмэлт нөхцөл оруулсан нь сурагчдаас тригнометрийн илүү нарийн ойлголтыг шаардах юм. Сурагчид бодлогыг хураангуйлан энгийн хэлбэрт оруулж чаддаг ч шийдийг гаргах тэр тусмаа өгөгдсөн завсарт харьяалагдах шийдийг сонгохдоо үндсэн хүндрэлтэй тулдаг. Иймд бодолтуудыг анхааралтай судлаад ойлгон авахыг хичээгээрэй. Олон бодлого бодохдоо биш аргачлалыг ойлгох нь чухал.

Нээгдсэн тоо: 3688 Төлбөртэй

Тригнометрийн функцуудийн чанарыг сайн мэдэж байх нь бодлого бодоход ихээхэн тустай. Чанарыг сайн ойлгоогүйгээс бодлогын шийдийг тодорхойлох, илэрхийлэл хувиргах, томьёонуудыг хэрэглэхдээ алдаа гаргах өндөр магадлалтай. Сайтад тавигдсан тригнометр сэдвийн бүх хичээлүүдийг сайтар үзэн холбогдох бодлогуудын бодолтыг ойлгосон байхад танд энэ сэдвээс айх зүйл байхгүй. Ингээд хичээлээ функцийн тэгш, сондгой чанарын тухай тодорхойлолтоос эхлэе.

Нээгдсэн тоо: 2976 Бүртгүүлэх

Тригнометрийн илэрхийллийг хялбарчлах аргууд, тэдгээрт ашиглах томьёонуудын талаарх хичээлээ үргэлжлүүлье. Тригнометрийн илэрхийллийг хялбарчлах арга техникийг сураагүй бол тригнометрийн тэгшитгэл, тэнцэтгэл бишийг бодох тухай яриад ч хэрэггүй. Тригнометр сэдэв нилээд олон тооны их төстэй хэлбэрийн томьёонуудтай байдаг нь тэдгээрийг цээжлэх, ашиглахад хүндрэлтэй байдал үүсгэх талтай.

Нээгдсэн тоо: 2552 Бүртгүүлэх

Хувьсагч тригнометрийн функцэд агуулагдаж буй илэрхийллийг тригнометрийн илэрхийлэл гэдэг. Ийм төрлийн илэрхийллийг хувирган эмхэтгэл хийхэд тригнометрийн функцуудын чанар, тригнометрийн томьёонуудыг ашиглана. Тригнометрийн тэгшитгэл, тэнцэтгэл бишүүдийг бодохдоо эхлээд илэрхийлэлд хувиргалт хийн тэдгээрийг энгийн хэлбэрт шилжүүлэн боддог тул тригнометрийн илэрхийллийг хялбарчлах аргыг сайн эзэмшсэн байхад энэ сэдвийн бодлогуудыг онцын хүндрэлгүй шийднэ. Энэ хичээлээр тригнометрийн илэрхийллийг хувиргахад ашигладаг үндсэн томьёонуудыг хэрхэн хэрэглэхийг сурах болно.

Нээгдсэн тоо: 2613 Төлбөртэй

Олон төрлийн бодлого, хувиргалт хийхэд тригнометрийн өнцөг хаана аль үед байрлаж байгаагаас хамааран тэдгээрийн тэмдгийг тооцох хэрэгтэй болдог. Иймээс тригнометрийн функцуудын тэмдгийг мэддэг байх нь туйлын чухал. Гэхдээ эдгээрийг цээжилнэ гэвэл хүнд бөгөөд алдаа гаргах өндөр магадлалтай тул тэмдгийн учрыг ойлгох хэрэгтэй. Энэ нь илүү амар болоод найдвартайн дээр тригнометрийг ойлгох үндсэн нөхцлүүдийн нэг мөн.

Нээгдсэн тоо: 7761 Нийтийн

Язгуур доор үл мэдэгдэгчийг агуулсан тэгшитгэлийг иррационал тэгшитгэл гэдэг. Ийм төрлийн тэгшитгэлийг бодохдоо тэгшитгэлд байгаа язгуурууд арифметикийн байх ёстой гэсэн нөхцлийг тооцон үл мэдэгдэгчийн утгын мужийг заавал тооцох хэрэгтэй. Үүнийг тооцоогүйгээс ихэнх алдаанууд гардаг. Хичээлээр иррационал тэгшитгэлийг бодох аргуудын талаар авч үзэх болно.

Нээгдсэн тоо: 28452 Нийтийн

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

Нээгдсэн тоо: 6025 Бүртгүүлэх

Вектор ба түүний үйлдлүүдийн талаар энэ хичээлээр авч үзье. Вектортой холбоотой бодлогууд дээр сурагчид будлих, алдаа гаргах нь элбэг байдаг. Ойлголт энгийн мэт боловч векторуудын нийлбэр, ялгавар, үржвэр зэргийг зөв ойлгохгүйгээр бодлого бодоход хүндрэл үүснэ. ЕБС-д энэ сэдвийн хичээлийг их өнгөцхөн үздэгээс сурагчид дутуу ойлгон улмаар бодлогод дээр дүрмүүдийг хэрэглэхдээ их сул байдаг. Иймээс вектор түүнтэй хийгдэх үйлдлүүдийг нэг мөр цэгцлэн тэдгээрийг бодлого бодоход ашиглаж сурахад хичээл зориулагдсан. Эхлээд ерөнхий ойлголтуудын талаар.

Нээгдсэн тоо: 13360 Төлбөртэй

Модултай тэгшитгэл, тэнцэтгэл биш, илэрхийллүүдээс сурагчид их айдаг. Модул тийм ч аймшигтай зүйл биш зүгээр л сургуульд түүнийг сайн тайлбарлан ойлголт өгдөггүйтэй холбоотой. Үүнээс үүдэн нэмэлт давтлага л авахгүй бол модул агуулсан бодлогыг сурагчдын ихэнх нь бодож чадахгүйд хүрдэг. Энэ юу гэсэн үг бэ гэвэл ЭЕШ-д модул ороод ирвэл та гарцаагүй оноо алдах эсхүл таахаас өөр замгүй болно. Иймээс энэ хичээлээр модулийн талаарх дутуу ойлголтыг дүүргэх гээд үзье. Айдсаа хойш тавь. Асуудал таны бодож байгаа шиг хүнд зүйл биш гэдгийг хичээлийн төгсгөлд ойлгох болно.

Нээгдсэн тоо: 8550 Нийтийн

Математикийн бодлого бодох яагаад хүнд байдаг вэ? гэвэл энд бүх зүйлийг ямар нэгэн алдаа гаргахгүй хийх хэрэгтэй болдог. Алдаа гаргавал тэр дороо алдаа гэж мэдэгдэхгүй та зүгээр л өөр бодлого бодох ажиллагаанд шилжээд явдаг. Тэгвэл бодлого биш жишээ нь гадаад хэл, уран зохиол, нийгмийн чиглэлийн асуудлыг буруу зөрүү явсан байсан ч зөв замдаа шууд ороод шийдэх боломжтой. Харин бодлого бодоход ийм зүйл байхгүй. Алдаа л хийсэн бол буруу зам руу орно. Үүнийгээ мэдэхгүй бол алдаа болно мэдвэл бараг эхнээс нь шалгах хэрэгтэй болно.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 67

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 95

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 101

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 124

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 125

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 179

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 120

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 116

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 128

 
Энэ долоо хоногт

Арифметик прогрессын ялгавар тэгтэй тэнцүү биш. Энэхүү прогрессын 1-р гишүүнийг 2-р гишүүнээр, 2-р гишүүнийг 3-р гишүүнээр, 3-р гишүүнийг 1-р гишүүнээр үржүүлэхэд гарах тоонууд өгөгдсөн дарааллаар геометрийн прогресс үүсгэдэг бол геометр прогессын хуваарийг ол.

Нээгдсэн тоо : 1334

 

Бөмбөрцөгт багтсан зөв дөрвөн өнцөгт пирамидийн суурь нь бөмбөрцөгийн төвийг дайрч байв. Пирамидийн эзэлхүүн 18-тай тэнцүү бол бөмбөрцөгийн радиусийг ол.

Нээгдсэн тоо : 1466

 

Зөв зургаан өнцөгт пирамидийн апофем h -тэй тэнцүү бөгөөд сууртай үүсгэх хоёр талст өнцөг 600 градус бол пирамидийн бүтэн гадаргуун талбайг ол.

Нээгдсэн тоо : 40