Математикийн хичээлүүд ( 285 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 430 Нийтийн

Ялгавар дахь хасагдагчийг эсрэг тэмдэгтэйгээр авбал ялгаварыг нийлбэрээр сольж болно. Нийлбэрийн энэ шинжийг

a - b = a + (-b)

ерөнхий томьёогоор илэрхийлж болно. Эндээс дурын ялгаварыг нийлбэрээр сольж болохыг энэ томьёо илэрхийлнэ. Иймээс алгебрт хасах, нэмэх үйлдэлүүд оролцсон дурын илэрхийллийг нийлбэр гэж үзэж болно.

Нээгдсэн тоо: 523 Нийтийн

Арифметикийн үйлдлүүдийн шинжүүдийг мэдэхгүй ч хүмүүс тэдгээрийг тооцоонд өргөн ашигладаг. Энэ удаа үржвэрийн шинжүүдийг аьч үзье.

Байр солих шинж.

Үржигдхүүнүүдийн байрыг солиход үржвэр өөрчлөлгдөхгүй. Өөрөөр хэлбэл үржвэрт орж буй гишүүдийн байрыг солиход үржвэрт нөлөөлөхгүй гэсэн үг. Эндээс дурын a, b тоонууд эсхүл илэрхийллийн хувьд a·b=b·a байна.

Жишээ

6·7=7·6 = 42
4·2·3=3·2·4 = 24
a·b·c=c·a·b=b·c·a

Нээгдсэн тоо: 778 Нийтийн

Нийлбэрийн шинжүүдийг сурагчид сайн мэддэг. Хүмүүс тоонуудын нийлбэрийг хурдан тооцоход эдгээр шинжүүдийг тогтмол хэрэглэдэг ч яг ямар шинж гэдгийг төдийлөн мэдээд байдаггүй.

Нээгдсэн тоо: 473 Төлбөртэй

Математикийн бүх илэрхийллүүд хамгийн сүүлд хийгдэх үйлдлээрээ нэрлэгддэг. Үүнийг сайн тогтоон аваарай. Учир нь сурагчид илэрхийллийг хараад a дээр нэмэх b хасах нь c үржих нь d гэх мэтээр унших гээд байх нь элбэг. Энэ нь таны алгебрийн анхан шатны мэдлэггүй гэж үзэхэд хүргэх том асуудал болохыг сануулъя.

Иймээс хичээлээр илэрхийллийг хэрхэн зөв уншихыг сурцгаая.

Нээгдсэн тоо: 1330 Төлбөртэй

Алгебрийн илэрхийлэл гэдэг нь тооны оронд үсэг болон цифр байж болох хэлбэрээр зохиогдсон бичлэг. Өөрөөр хэлбэл үсэг болон тоонууд холилдон орсон бичлэг. Үүний дээр алгебрийн илэрхийлэл арифметикийн үйлдлүүдийн тэмдэгүүд болон хаалтыг агуулж байж болно.
Алгебрт тоог тэмдэглэсэн дурын үсэг, цифрүүдээр дүрслэгдсэн дурын тоог алгебрийн илэрхийлэл гэж үздэг. Томьёонд агуулагдаж буй алгебрийн илэрхийллийн үсгүүдийг өгөгдсөн тоонуудаар орлуулан заагдсан үйлдлүүдийг хийн арифметикийн тодорхой бодлогуудад хэрэглэдэг.

Нээгдсэн тоо: 4050 Нийтийн

Алгебрийн ухагдхуун, илэрхийлэл, тэгшитгэл, тэнцэл биш гээд бүхий л зүйлийн тэмдэглэгээнд латин болон грек үсгийг голдуу ашигладаг тул үсгүүдийг тогтоон цээжилсэн байх хэрэгтэй.

Нээгдсэн тоо: 1113 Нийтийн

Координатийн шулуун дээрх хоёр цэгийн хоорондын зай нь тэдгээрийн координатуудын ялгаварын модултай тэнцүү. Үүнийг математикийн хэлээр буюу томьёогоор илэрхийлбэл

AB=|a-b|

юм. Энд A, B бол координатийн шулуун дээрх дурын хоёр цэг бөгөөд a, b нь тэдгээрийн координатууд.

Нээгдсэн тоо: 868 Бүртгүүлэх

Тоон завсар гэдэг нь координатийн шулуунд дүрсэлж болох тоон ологлог юм. Тоон завсарт цацраг, хэрчим, интервал, хагас интервалууд орно. Тоон олонлогуудыг функцийн тодорхойлогдох болон утгын муж, тэнцэлтгэл бишийн шийдүүд, тэнцэтгэл биш зэрэгт өргөн ашигладаг тул тэдгээрийн хэлбэр, тэмдэглэгээг бүрэн ойлгон мэдсэн байх хэрэгтэй.

Нээгдсэн тоо: 4228 Төлбөртэй

Тоон тэнхлэг хичээлээр тоон тэнхлэг ухагдхууныг үзсэн. Тэгвэл хавтгайд хоорондоо перпендикуляр OX, OY тоон тэнхлэгийг байгуулбал тэднийг координатийн тэнхлэг гэж нэрлэдэг. Хэвтээ OX тэнхлэгийг абсцисс (x тэнхлэг) харин босоо OY тэнхлэгийг ординат (y тэнхлэг) гэнэ.

Нээгдсэн тоо: 1598 Нийтийн

Алгебрт тоон эсхүл координатийн тэнхлэг ойлголт чухал үүрэгтэй. Иймээс хичээлээр тоон тэнхлэг ухагдхууны талаар авч үзье.
Эхлэлийн цэг, эерэг чиглэл болон нэгж хэрчмийг тэмдэглэсэн шулууныг координатийн буюу тоон тэнхлэг гэнэ. O эхлэлийн цэгтэй эерэг чиглэлийг сумаар заасан доорх шулууныг авч үзье.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 102

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 167

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 135

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 255

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 286

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 301

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 358

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 345

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 427

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 560

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 1013

 

Хоёр тамирчин тойрог замаар нэгэн зэрэг гарч 3,2 км замыг туулан барианд оржээ. Тойргийг нэг тамирчин нөгөөгөөсөө 10 секундээр хурдан тойрдог. Ялагч барианд орж байхад нөгөө нь бүтэн тойрог гүйх үлдсэн байлаа. Ялагч замыг 9 мин 20 секундэд туулсан бол тойрог замын уртыг ол. Тамирчдын хурдыг тогтмол гэж үзнэ.

Нээгдсэн тоо : 516