Математикийн хичээлүүд ( 285 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 3914 Төлбөртэй

Геометрийн хичээл математикаас илүү  хүнд гэж хүмүүс ярьдаг. Геометрт илүү олон тодорхойлолт, ойлголт, теоремууд орж ирдэгээс үүдэн ингэж үздэг байж болох талтай. Эдгээр нэмэлтүүдийг сайн ойлгоогүй бол геометрийн бодлогыг бодох ямарч боломжгүй. Иймээс Хавтгайн геометр хичээлийн багцыг үзэхийг хичээнгүйлэн зөвлөе.

Энэ хичээлд олон өнцөгтүүдийн тухай авч үзье. Огтлолцолгүй битүү тахир шугамаар хязгаарлагдсан геометрийн дүрсийг олон өнцөгт гэнэ.

Нээгдсэн тоо: 6093 Нийтийн

Геометрийн тойрог, дугуй дүрсүүдийн ялгааг сайн ойлгодоггүй байх тохиолдол элбэг. Зарим сурагчид эдгээрийн ялгааг ойлгоогүйн улмаас бодлогын нөхцлийг ойлгохгүй бодох аргаа ч олохгүй байх тохиолддол гардаг. Тойрог, дугуйн ялгааг ойлгохын тулд эхлээд Тойрог хичээлийг үзэхийг зөвлөе.

Нээгдсэн тоо: 1473 Төлбөртэй

Математик ямар хэрэгтэй талаар хүмүүс олон янзаар ярьдаг. Зарим хүмүүс математикийн хэрэглээг зөвхөн 4 аргын тооны хүрээнд хардаг боловч өөрөө математикийн шинжлэх ухааны ололт дээр суурилан бий болсон техник хэрэгслүүдийг угаасаа байсан мэтээр хэрэглэж байдаг. Гэтэл зарим нэг хэсэг нь математикгүйгээр болоод л ирсэн гэсэн зүйлийг ч ярьж байдаг. Энэ бол хүмүүсийн ойлголтын өнцгүүд. Харин сайн сурдаг сурагчид бүгд математиктаа бусдаасаа илүү байдагийг бүгд мэднэ. Яагаад ийм зүй тогтол байдагт өөрийн бодлыг хэлье. Зарим хичээлд муу байж болох ч математикт муу байж болохгүй. Математикт сайн бол бусад хичээлд муу байх үндэсгүй гэдгийг баттай хэлэх байна. Иймээс хичээл сурлагадаа сайжран, амжилтанд хүрье гэвэл математикийн хичээлээ сайн үзэн ойлгоорой. Тэгвэл бусад хичээлүүдэд аяндаа сайн болоод ирнэ. Туршаад үзээрэй.

Энэ удаад тойрогт багтсан өнцгийн талаар авч үзье. Математикийг зөвхөн тоо бодох хүрээнд ердөө харж болохгүй. Онолын мэдлэгт суурилан асуудлын шийдлийг олдог юм шүү.

Нээгдсэн тоо: 1226 Төлбөртэй

Тригнометрийн ямарч тэгшитгэлийг бодох үндсэн аргачлал бол анхдагч тэгшитгэлийг хувирган торигнометрийн энгийн тэгшитгэлүүдэд шилжүүлээд тэдгээрийн шийдийг олох байдаг. Иймээс тригнометрийн энгийн тэгшитгэлийн шийдийг цээжээр мэдэж байх хэрэгтэй. Энгийн тэгшитгэлийн шийдийг гаргаж буй аргачлалыг сайн ойлголгүй хүчээр цээжлсэнээс болоод тэгшитгэлүүдийн шийдүүдийг холих, тодорхой интервал дахь шийдийг тодорхойлох, орлуулгаас шийдийг олох гээд олон тохиолдолд асуудалд орох талтай.

Жич: Тригнометрийн энгийн тэгшитгэлийн шийдүүд хэрхэн гарч байгааг ойлгохгүйгээр шууд цээжилбэл та цаашид мартан тригнометр гэдэг ухагдхууныг мэддэггүй хүмүүсийн эгнээнд орно. Ихэнх хүмүүс энэ замаар явсан байдаг учраас математикийг хүнд хэцүү хичээл мэтээр ойлгон ярьдаг.

Хичээлээр cosx=a, sinx=a хэлбэрийн энгийн тэгшитгэлийн шийдийг хэрхэн тодорхойлохыг авч үзье.

Нээгдсэн тоо: 5308 Нийтийн

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

Нээгдсэн тоо: 2871 Бүртгүүлэх

Тойргийн төвтэй давхцсан оройтой тойргийн хоёр радиусаар үүсэх өнцгийг тойргийн төв өнцөг гэдэг.

Зураг 1 -д тойргийн төв O болон AO, OB радиусуудаар үүссэн O оройтой хоёр төв өнцгийг үзүүлсэн. Төв өнцгийн дотоод хэсэгт орших нумыг тухайн төв өнцөгт харгалзах нум гэнэ. AOB төв өнцөгт A ба B төгсгөлтэй хоёр нум харгалзана. 2-р зураг.

Нээгдсэн тоо: 3055 Нийтийн

Хоёр тойрогийн харилцан байршлыг тэдгээрийн радиусууд R, r болон төв хоорондын зай d гээр харьцуулан тодорхойлохыг авч үзье. Тодорхой байх үүднээс R≥r гэж үзье. Тойргууд харилцан байрших байрлалуудыг авч үзвэл

Нээгдсэн тоо: 3543 Төлбөртэй

Тойрог болон шулуунуудын харилцан байршлаар огтлогч, шүргэгч гэсэн чухал ухагдхуунууд үүсдэг. Эдгээрийг сайн ойлгон шинжүүдийг мэдэж байхад тойрогтой холбоотой олон тооны бодлогыг шийдэх суурь болдогийг сануулъя. Хавтгайд тойрог болон шулуунууд огтлолцон эсхүл огтлолцохгүйгээр байрлах боломжтой.

Тойрогийн төв O -гоос m шулуун хүртлэх зай OA перпендикулярийн урттай тэнцүү. Эндээс тойргийн төвөөс шулуун хүртлэх зай нь тойргийн төвөөс шулуунд буулгасан перпендикулярийн урттай тэнцэнэ. Энэ зайнаас хамааран тойрог шулууны байрлалыг тодорхойлох боломжтой.

Нээгдсэн тоо: 4597 Бүртгүүлэх

Томьёоны гаргалгааг заавал мэдэж байх албагүй ч томьёог хэрхэн гаргаж байгааг харан зүйг тогтол, гаргалгааны аргачлалыг ойлгон авбал математик сэтгэлгээ, сэтгэн бодох, бодлогын шийдлийг олох чадварт сайн нөлөөтэй. Натурал тоонуудын квадратуудын нийлбэрийг

томьёогоор олдог. Томьёог нийлбэрийн кубийн томьёог ашиглан гаргана. Үүнээс санаа аваад өөрөө оролдоод үзээрэй. Чадахгүй бол гаргалгааны дэлгэрэнгүйг үзээрэй.

Нээгдсэн тоо: 1446 Бүртгүүлэх

Бодлого бодохдоо квадратуудын ялгавар , кубуудын ялгавар томьёонуудыг ихээр ашигладаг. Тэгвэл дөрөв, тав гэх мэтээр n зэргийн ялгаваруудад тохирох

ерөнхий томьёо байдөг бөгөөд хичээлээр энэ томьёоны гаргалгааг сурцгаая.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 66

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 95

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 101

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 124

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 125

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 179

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 120

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 116

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 127

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1169

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1089

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 840