Математикийн хичээлүүд ( 285 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 8037 Бүртгүүлэх

x2=a гэсэн дутуу квадрат тэгшитгэлийг авч үзье. Энд a - тодорхой тоо. Энэ тэгшитгэлийн шийд нь

болно.

Энд гурван тохиолдол гарна.

1. Хэрвээ a=0 бол x=0
2. Хэрвээ a нь эерэг тоо бол тэгшитгэл эерэг, сөрөг хоёр шийдтэй.

Жишээ
тэгшитгэл нь 5, -5 гэсэн хоёр шийдтэй. Шийдийг дараах хэлбэрээр гэж бичдэг.

Нээгдсэн тоо: 4885 Бүртгүүлэх

Хоёрдугаар эрэмбийн алгебрын тэгшитгэлийг квадрат тэгшитгэл гэнэ.

Энд a, b, c өгөгдсөн тоон болон үсгэн коэффициентууд. x нь үл мэдэгдэгч. Хэрвээ a=0 бол шугаман тэгшитгэл болно. Иймээс бид энд зөвхөн a≠0 тохиолдолыг авч үзнэ. Тэгвэл тэгшитгэлийн бүх гишүүдийг a -д хуваавал дараах тэгшитгэл гарна.

Энд p=b/a, q=c/a. [2] тэгшитгэлийг эмхэтгэсэн квадрат тэгшитгэл гэдэг. Харин [1] тэгшитгэлийг гүйцэд квадрат тэгшитгэл гэнэ. Хэрвээ b эсвэл c эсвэл хоёулаа тэгтэй тэнцүү тохиолдолд тэгшитгэлийг дутуу квадрат тэгшитгэл гэнэ.

Нээгдсэн тоо: 10695 Бүртгүүлэх

Иррационал тоо -г рационал тоо шиг m/n /энд m , n - бүхэл тоонууд/ хэлбэрийн хураагдахгүй энгийн бутархай байдлаар илэрхийлж болдоггүй. Иррационал тоог дурын нарийвчлалтай тооцож болох боловч рационал тоогоор солих боломжгүй. Иррационал тоо нь геометрийн хэмжээсийн үр дүнд гарч ирж болно.

Жишээ

  • Квадратын диагналын урт, түүний талын уртын харьцаа -
  • Тойргийн уртыг диаметрт нь харьцуулсан харьцаа нь π / пи /тоотой тэнцүү  
  • Өөр иррационал тоонуудын жишээнүүд.

Нээгдсэн тоо: 8848 Нийтийн

Тэгш зэргийн язгуур нь нэмэх, хасах гэсэн хоёр утгатай байдгийг бид мэднэ.
Учир нь (+5)2=25 бас (-5)2=25 байдаг.

Эерэг a тооны n зэргийн арифметик язгуур гэдэг нь ямар нэгэн эерэг тооны n зэрэг нь a тоотой тэнцүү байхыг хэлнэ.
Тооны n зэргийн алгебрын язгуур гэдэг нь энэ тооны бүх язгуурын олонлогийг хэлнэ. Тэгш зэргийн алгебрын язгуур нь эерэг, сөрөг хоёр утгатай байна.

Нээгдсэн тоо: 7526 Бүртгүүлэх

Зэргийн үйлдлүүд

  • Ижил суурьтай зэргүүдийг үржихдээ тэдгээрийн зэрэг илтгэгчдэдийг нэмнэ.

  • Ижил суурьтай зэргүүдийг хуваахдаа тэдгээрийн зэрэг илтгэгчдэдийг хасна.

  • Тоонуудын үржвэрийн зэрэг нь үржигдхүүн бүрийн тухайн зэргийн үржвэртэй тэнцүү.

  • Харьцааны /бутархай/ зэрэг нь хуваагдагч /хүртвэр/ , хуваагчийн /хуваарь/ зэргийн харьцаатай тэнцүү.

  • Зэргийг зэрэг дэвшүүлэхдээ зэрэг илтгэгчдэдийг хооронд нь үржүүлнэ.

Нээгдсэн тоо: 6666 Бүртгүүлэх

хэлбэрийн тэгшитгэлийн системийг гурван үл мэдэгдэгчтэй гурван шугаман тэгшитгэлийн систем гэнэ. Энд a, b, c, d, e, f, g, h, p, q, r, s өгөгдсөн тоонууд, x, y, z үл мэдэгдэгчид. a, b, c, e, f, g, p, q, r  үл мэдэгдэгчдийн коэффициент, d, h, s сул гишүүд юм. Ийм тэгшитгэлийн системийг үндсэн хоёр аргаар /орлуулах, нэмэх ба хасах/ боддог. Энд бид зөвхөн Крамерын аргыг дэлгэрэнгүй авч үзнэ. Эхлээд гуравдугаар эрэмбийн тодорхойлогч гэдэг ойлголтыг авч үзье. Дараах илэрхийллийг

Нээгдсэн тоо: 3229 Төлбөртэй

хэлбэрийн тэгшитгэлийн системийг хоёр үл мэдэгдэгчтэй хоёр шугаман тэгшитгэлийн систем гэнэ.Энд a, b, c, d, e, f нь өгөгдссөн тоонууд. x, y нь үл мэдэгдэгчид. a, b, c, d тоонууд нь үл мэдэгдэгчдийн коэффициентүүд, e, f сул гишүүд. Ийм тэгшитгэлийн системийг үндсэн хоёр аргаар боддог.

Орлуулах арга

  1. Аль нэг тэгшитгэлээс аль нэг үл мэдэгдэгчийг жишээлбэл x-г нөгөө үл мэдэгдэгч y болон коэффициентүүдээр илэрхийлнэ. x=(c-by)/a [ 2 ]
  2. Хоёрдугаар тэгшитгэлд x -ийг орлуулж бичнэ. d(c-by)/a+ey=f
  3. Сүүлчийн тэгшитгэлээс y-г олно. y=(af-cd)/(ae-bd)
  4. y-ийн утгыг [ 2 ] илэрхийлэлд орлуулна. x=(ce-bf)/(ae-bd)

Нээгдсэн тоо: 5943 Нийтийн

ax+b=0 хэлбэрийн тэгшитгэтгэлийг нэг үл мэдэгдэгчтэй шугаман тэгшитгэл гэнэ. Энд a , b нь тодорхой тоонууд харин x нь үл мэдэгдэгч болно.
Тэгшитгэлийг бодно гэдэг нь тэгшитгэлийг адитгал болгох x үл мэдэгдэгчийн тоон утгыг олно.

  1. Хэрэв a≠0 бол тэгшитгэлийн шийд нь
  2. Хэрэв a=0 бол хоёр тохиолдол гарна.
    • b=0 бол 0·x+0=0 энд x дурын тоо байж болно.
    • b≠0 бол 0·x+b=0 энд тэгшитгэл шийдгүй.

 

Нээгдсэн тоо: 2176 Төлбөртэй

Тоон болон үсгэн илэрхийллүүд нь « = » тэмдгээр холбогдож байвал тэдгээрийг тэнцэл үүсгэлээ гэнэ. Дурын тоон тэнцэл мөн түүнчлэн үсгийн оронд орлуулж болох бүх тоон утгуудад зөв байх дурын үсгэн тэнцлүүдийг адитгал гэнэ.

Жишээ

  • 4 · 7 + 2 = 30 тоон тэнцэл нь адитгал юм.
  • үсгэн тэнцэл нь бас адитгал. Учир нь үсгүүдийн бүх утганд тэнцэл биелнэ.

Нээгдсэн тоо: 6282 Нийтийн

Порпорц

Порпорц гэдэг нь хоёр харьцааны тэнцэл юм.

порпорцоос ad=bc / диагнолд байрлах гишүүдийн үржвэр тэнцүү / гарна. Мөн түүнчлэн ad=bc тэнцлээс дараах порпорцууд гарна.

Эдгээр болон бусад порпорцыг анхны порпорцоос дараах дүрмээр гарган авна.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 150

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 218

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 184

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 301

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 330

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 338

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 414

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 412

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 490

 
Энэ долоо хоногт

Тэгш өнцөгт параллелепипедын диагнал түүний 3 ба 4 хэмжээтэй талстад 60 градусын өнцгөөр налсан бол диагоналын урт хэд вэ?

Нээгдсэн тоо : 1287

 

Суурийн радиус нь 4 см байх шулуун дугуй цилиндрийн нэг үзүүрээс зурагт үзүүлснээр хавтгайгаар огтлоход хамгийн урт байгуулагч нь 15 см, хамгийн богино байгуулагч нь 9 см болсон бол үүссэн биетийн эзэлхүүнийг ол.

Нээгдсэн тоо : 2937

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 209