Үндсэн курс ( 265 )

Математикийн хичээлийн бүх сэдвийг хамарсан ерөнхий курсын хичээлүүд. Та математикийн хичээлээ давтах, бодлого бодох, шалгалтанд бэлтгэхийн тулд ерөнхий ухагдхуун, үндсэн зарчмуудын талаар тодорхой хэмжээний мэдлэгтэй байх хэрэгтэй. Манай сайтын энэ хэсэгт математикийн хичээлтэй холбогдолтой онолын материалуудыг нийтлэж байх тул эндээс та өөртөө хэрэгтэй мэдээллийг олон авна гэдэгт итгэж байна.

Танд амжилт хүсье.  

Нээгдсэн тоо: 5134 Бүртгүүлэх

Энэ хэсэгт бид хавтгай дүрсийн талбайг олоход өргөн хэрэглэдэг томьёонуудыг авч үзнэ.
Квадрат /Зур. 58/ a - тал , d - диагнал.

Тэгш өнцөгт /Зур. 59/ a, b - талууд.

Нээгдсэн тоо: 10601 Төлбөртэй

Зөв олон өнцөгт

Өнцгүүд нь тойрог дээр байрлах олон өнцөгтийг тойрогт багтсан /Зур. 54/, талууд нь тойргийн шүргэгч болж байгаа олон өнцөгтийг тойрог багтаасан /Зур. 55/ гэж нэрлэдэг.

Олон өнцөгтийн орой дээгүүр дайрч өнгөрч байгаа тойргийг багтаасан тойрог /Зур. 54/, олон өнцөгтийн талууд нь шүргэгч болж байгаа тойргийг багтсан тойрог /Зур. 55/ гэж бас нэрлэдэг.

Нээгдсэн тоо: 4002 Төлбөртэй

Цэг

Цэгүүдийн геометр байрлал. – энэ нь өгөгдсөн тодорхой нөхцлийг хангах бүх цэгийн олонлог.

Жишээ 1
Дурын хэрчмийн дундажид буулгасан перпендикуляр нь энэ хэрчмийн төгсгөлүүдээс ижил зайд орших цэгүүдийн геометр байрлал / бүх цэгийн олонлог / юм. PO  AB ба  AO = OB гэе

Тэгвэл дундажийн перпендикуляр дээрх дурын P цэг нь AB хэрчмийн төгсгөлүүд A , B ээс d тэй тэнцүү ижил зайд байна.

Нээгдсэн тоо: 2519 Бүртгүүлэх

Хавтгай дүрсийн бүх хэмжээг нэг ижил тоо / ихэсгэх эсвэл багасгах / дахин өөрчлөхөд гарсан дүрс анхны дүрс хоёрыг төстэй гэнэ. Хоёр төстэй дүрсийн хувьд тэдгээрийн харгалзах өнцгүүд тэнцүү. Нэг дүрс дээрх A, B, C, D цэгүүд нь нөгөө дүрс дээрх a, b, c, d цэгүүдтэй харгалзаж байвал гэх мэт байна.
ABCDEF ба abcdef хоёр олон өнцөгт  /Зур. 37/ төстэй бол, тэдгээрийн өнцгүүд тэнцүү , харин талууд нь порпорционал байна.

Нээгдсэн тоо: 6536 Төлбөртэй

Паралелграм ба трапец

Эсрэг талууд нь хос хосоороо паралел байдаг дөрвөн өнцөгтийг паралелграм гэнэ. /Зур. 32/

Паралелграмын эсрэг байрлах дурын хоёр талыг сууриуд гэх бөгөөд тэдгээрийн хоорондох зайг өндөр гэдэг. / BE, Зур. 32/

Нээгдсэн тоо: 9212 Төлбөртэй

Гурван талтай / эсвэл гурван өнцөгтэй / олон өнцөгтийг гурвалжин гэнэ. Гурвалжингийн талуудыг голдуу жижиг үсгээр , талын эсрэг орших оройг том үсгээр тэмдэглэдэг.

Гурвалжингийн бүх гурван өнцөг нь /Зур. 20/ хурц байвал хурц өнцөгт , аль нэг өнцөг нь /Зур. 21/ тэгш байвал тэгш өнцөгт гурвалжин гэж нэрлэнэ. Тэгш өнцөгт гурвалжны тэгш өнцгийг үүсгэж байгаа a, b талуудыг катетууд, харин тэгш өнцгийн эсрэг орших талыг гипотенуз гэдэг. Гурвалжингийн аль нэг өнцөг нь /Зур. 22/ мохоо байвал мохоо өнцөгт гурвалжин гэнэ.

Нээгдсэн тоо: 23987 Нийтийн

Хэрчмүүдээр бүрэн хаагдсан хавтгай дүрсийг олон өнцөгт гэнэ. Өнцгийн тооноосоо хамааран олон өнцөгт нь гурвалжин, дөрвөлжин, таван өнцөгт, зургаан өнцөгт гэх мэтээр байж болно. /Зур. 17/ дээр ABCDEF гэсэн зургаан өнцөгтийг үзүүлсэн байна. A, B, C, D, E, F цэгүүдийг олон өнцөгтийн орой гэнэ.

Нээгдсэн тоо: 4154 Нийтийн

Хавгайн геометрт ихэнхдээ ашиглагддаг аксиомуудыг авч үзье

  1. Харьяаллын аксиом. Хавтгай дээрх дурын хоёр цэгийг дайруулж цорын ганц  шулуун татна.
  2. Дарааллын аксиом. Шулуун дээрх гурван цэгээс хоёр цэгийнхээ дунд орших нэг цэг олдоно.
  3. Хэрчим өнцөгийн тэнцлийн аксиом. Хэрвээ хоёр өнцөг юмуу хэрчим гуравдагч өнцөг юмуу хэрчимтэй тэнцүү бол тэдгээр нь өөр хоорондоо тэнцүү байна.
  4. Паралель шулууны аксиом. Шулууны гадна орших дурын нэг цэгийг дайруулан уг шулуунтай паралель цорын ганц шулуун татаж болно.
  5. Үргэлжлэлийн аксиом. / Архимедын аксиом /  AB ба CD дурын хоёр хэрчмийн хувьд гэсэн төгсгөлөг цэгийн багц байна. Тэгвэл AB хэрчим дээр байгаа хэрчмүүд нь CD дээрх хэрчмүүдтэй тэнцүү бөгөөд A ба хооронд B цэг оршино.

Нээгдсэн тоо: 18990 Нийтийн

Нэг хавтгай дээр орших хоорондоо огтлолцодгүй /Зур. 11/ AB ба CD шулуунуудыг паралель шулуун гэдэг бөгөөд AB || CD гэж тэмдэглэнэ. Паралель шугамын нэг дээр байрлах цэг нөгөө шугаман дээр байрлах цэгээс ижил зайд байна. Паралель шугамын хоорондох өнцөгийг тэг гэж үздэг. Нэг чигт чиглэсэн хоёр паралель цацрагийн хоорондох өнцөг тэгтэй , эсрэг чиглэлтэй тохиолдолд тэнцүү. KM шулуунтай перпендикуляр AB, CD, EF /Зур. 12/  шулуунууд нь өөр хоорондоо паралель байна. Паралель хоёр шулуунтай перпендикуляр шулууны урт нь паралель шулуунуудын хоорондын зай болно.

Нээгдсэн тоо: 4736 Бүртгүүлэх

O гэсэн нэг цэгээс / өнцгийн орой / гарсан OA , OB хоёр цацрагаас / өнцгийн талууд / үүссэн геометрийн дүрсийг өнцөг гэнэ. /Зур. 1/

Өнгийг тэмдэг ба өнцгийн орой, төгсгөлүүдийг заасан 3 үсгээр гэж тэмдэглэнэ. Ингэхдээ оройг илэрхийлэх үсгийг дунд нь бичнэ. Өнцгийг OA цацраг O оройг тойрон OB цацрагтай давхцах хүртэл эргэлтээр хэмжинэ. Радиан ба градус гэсэн хоёр нэгжийг өнцгийн хэмжээнд голлон ашигладаг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 262

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 344

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 310

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 407

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 453

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 483

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 568

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 647

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 683

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1419

 

тэгшитгэл бод.

Нээгдсэн тоо : 1022

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1068