Үндсэн курс ( 265 )

Математикийн хичээлийн бүх сэдвийг хамарсан ерөнхий курсын хичээлүүд. Та математикийн хичээлээ давтах, бодлого бодох, шалгалтанд бэлтгэхийн тулд ерөнхий ухагдхуун, үндсэн зарчмуудын талаар тодорхой хэмжээний мэдлэгтэй байх хэрэгтэй. Манай сайтын энэ хэсэгт математикийн хичээлтэй холбогдолтой онолын материалуудыг нийтлэж байх тул эндээс та өөртөө хэрэгтэй мэдээллийг олон авна гэдэгт итгэж байна.

Танд амжилт хүсье.  

Нээгдсэн тоо: 14158 Бүртгүүлэх

Бид өмнө нь хязгаар гэж юу болох энгийн хязгааруудыг хэрхэн бодох талаар авч үзсэн. Хязгаарыг ойлгох нь хичээлд үзсэн жишээнүүд их энгийн байсан бөгөөд ийм бэлэгүүд практикт ховор тохиолдох тухай дурдсан. Тэгэхлээр энэ хичээлд хязгаарын илүү нарийн төрлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе.

∞/∞ хэлбэрийн тодорхойгүй төрлийн хязгаарыг бодох.

x->∞ байх үед функц нь хүртвэр, хуваардаа олон гишүүнтийг агуулсан хязгааруудыг авч үзье.

Жишээ 1.

хязгаарыг тооцоол.

Нээгдсэн тоо: 3903 Төлбөртэй

ЕБС-ын ахлах ангид математик анализын эхлэл болох хязгаар, уламжлал, интеграл зэрэг сэдвүүдийг эхлэл байдлаар үздэг. Эдгээр сэдвүүдийг сайн ойлгох нь цаашид их сургуульд дээд математикийн хичээлүүдэд амжилттай суралцах үндсэн суурь болдог. Хэдийгээр сэдвүүдийг эхлэлийн хэмжээнд үздэг ч ерөнхий шалгалт дээр дээрх сэдвийг хамарсан бодлогууд тогтмол орж ирсэн байдаг. Сурагчид сэдвүүдийн талаар баттай суурь мэдлэг олж аваагүйн улмаас бодлогыг бодохдоо алдаа гарган оноо алдах үзэгдэл их түгээмэл харагддаг. Сэдвүүд ЕБС-ын математикийн хичээлийн агуулга дотроо арай хүндхэн хэсэгт орох ч утгыг нь зөв ойлгосон тохиолдолд тийм ч аймшигтай зүйлүүд биш. Энэ хичээлээр бид хязгаар гэж юу болох түүнийг хэрхэн ойлгохыг авч үзнэ. Хязгаарыг сайн ойлгосон байхад уламжлал, интегралыг ойлгоход амархан.

Нээгдсэн тоо: 7783 Нийтийн

Тэнцэтгэл бишийг бодох бодлого элсэлтийн ерөнхий шалгалтанд орж ирэх нь гарцаагүй. Олон гишүүнт, логарифм, тригнометр, рационал, ирррационал гэх мэтээр тэнцэтгэл бишүүд олон төрлийнх байдаг. Сурагчид тэнцэтгэл биш тэр тусмаа иррационал тэнцэтгэл бишийг бодохдоо тодорхой хүндрэлтэй тулгардаг тул энэ хичээлээр иррационал тэнцэтгэл бишийг бодох тухай авч үзье. Язгуур доор функцыг агуулсан тэнцэтгэл бишийг иррационал тэнцэтгэл биш гэдэг. Хамгийн ихээр тохиолддог иррационал тэнцэтгэл бишийн хэлбэрүүд тэдгээрийн бодолтын талаар авч үзье.

Нээгдсэн тоо: 2039 Бүртгүүлэх

Кубыг хавтгайгаар зүсэлт хийх нь пирамидын зүсэлтийг бодвол арай энгийн. Өгөгдсөн цэгүүдийн хоёр нь нэг хавтгайд байрлаж байвал тэдгээрийг дайруулан шулуун татаж зүсэгч хавтгайн мөрийг гаргаж болно. Кубын зүсэлтийг байгуулахад зүсэгч хавтгайн мөрийг байгуулах бас нэг боломж байдаг. Паралел хоёр хавтгайг гуравдахь хавтгай паралел шугамуудаар огтолж байгаа тул аль нэгэн талстад зүсэлтийн шугамыг байгуулсан бол нөгөө хавтгайд зүсэлт дайран өнгөрөх цэг олдох бөгөөд бид энэхүү цэгийг дайруулан байгуулсан шулуунтай паралел шулууныг татаж болно. Кубыг хавтгайгаар зүссэн байгуулалтыг хэрхэн үүсгэхийг тодорхой жишээнүүдээр авч үзье.

Нээгдсэн тоо: 8369 Төлбөртэй

Математикт илэрхийлэл гэж юуг хэлэх вэ? Илэрхийлэлд хувиргалт хийх ямар хэрэгтэй вэ? гэсэн асуултууд танд сонин санагдаж магад. Учир нь эдгээр ойлголтууд бол математикийн үндэс юм. Математик бүхэлдээ илэрхийлэл, тэдгээрийн хувиргалтаас бүрдэнэ. Ойлгомжгүй байна уу. Тайлбарлая. Маш нүсэр бичлэгтэй, төвөгтэй жишээ байлаа гэе. Та математикт сайн тул айгаад байх зүйлгүй гэж бодъё. Тэгвэл шууд хариуг нь хэлж чадах уу? Үгүй шүү дээ.
Та энэ жишээг бодох л болно. Мэдээжээр ямар нэгэн дүрмийн дагуу алхам алхамаар жишээг хувирган эмхэтгэл хийнэ. Өөрөөр хэлбэл илэрхийлэлд хувиргалт хийнэ. Эдгээр хувиргалтуудыг хир сайн хийх нь таныг математикт төчнөөн сайныг илтгэнэ. Хэрвээ та хувиргалтыг зөв хийж чадахгүй бол математикт та юу ч хийж дийлэхгүйд хүрнэ. Ийм байдалд орохгүйн тулд илэрхийллийн тухай энэ удаа авч үзье. Илэрхийллийн хувиргалт хийж сурах нь бодлого бодох үндэс. Үүнийг сураагүй бол ямарч бодлогыг бодох талаар санаад ч хэрэггүй. Тэгэхлээр эхлээд математикт илэрхийлэл гэж юуг ойлгох, тоон болон алгебрын илэрхийлэл гэж юу болохыг тодруулъя.

Нээгдсэн тоо: 17840 Нийтийн

Бид өмнө нь Тооноос квадрат язгуур авах талаар үзсэн бол энэхүү нийтлэлээр тооны машин ашиглахгүйгээр куб язгуур авахыг сурцгаах болно. Энд бид зөвхөн натурал тоонуудын хувьд авч үзнэ.

Дээрх тоонуудын язгуурыг цээжээр гаргана гэвэл та хир их хугацаа зарцуулна гэж бодож байна. Хэрвээ та бидний үзэх аргачлалыг хэдэн удаа сайн давтвал ямарч тооны куб язгуурыг тун бага хугацаанд гаргах болно.

Нээгдсэн тоо: 2951 Төлбөртэй

Энэ хичээлд язгуур агуулсан буюу иррационал илэрхийллийг эмхэтгэх хоёр аргын талаар авч үзье. Иррационал илэрхийллийг эмхэтгэх бодлогууд шалгалтанд нилээд түгээмэл ирдэг бөгөөд сурагчид ийм төрлийн илэрхийллийг эмхэтгэхдээ төдийлөн сайн биш байдаг. Иймд энэхүү универсал аргыг сайтар ойлгосон байхад эмхэтгэх боломжтой ямарч төрлийн иррационал илэрхийллийг эмхэтгэж чадах юм.

хэлбэрийн илэрхийллийг эмхэтгэх

Язгуур алгуулсан илэрхийллийн нэг төрөл бол хэлбэрийн бодлого байдаг. Ерөнхий тохиолдолд илэрхийллийг хэлбэрийн хоёр гишүүнтийн квадрат байдлаар хувиргахыг оролдох хэрэгтэй. a, b, c - том тоонууд биш байвал үүнийг амархан хийдэг. Харин a, b, c "эвгүй" өгөгдсөн бол хоёр гишүүнтийн квадратыг ялгаж чадахгүйд хүрнэ.

Нээгдсэн тоо: 11772 Нийтийн

Энэ удаа тооны машин ашиглахгүйгээр том тооноос хэрхэн язгуур авах талаар үзье. Үүнийг мэдэж байх нь шалгалт шүүлэг гэлтгүй ерөнхий тохиолдолд ч хэрэгтэй. Тоог үржигдхүүнд задлаад язгуур авчихна гэж бодвол энгийн мэт. Жишээ нь 291600 гэсэн тоог үржигдхүүнд задалбал
болно. Эндээс тооцоог хийвэл

гээд л болоо. Тоо 2, 3, 4 гэх мэтээр үржигдхүүнд задарвал арга нь дажгүй. Гэхдээ нэг асуудал бий. Язгуураас гаргах тоо маань анхны тоонуудыг үржвэр хэлбэрээр задарч байвал яах вэ? Жишээ нь 152881 нь 17·17·23·23 гэж задарна. Эдгээр хуваагчийг шууд олох гээд үзээрэй. Нилээд хүндхэн байх болов уу.

Нээгдсэн тоо: 17032 Нийтийн

Геометрийн бодлого, тригнометрийн илэрхийлэл, тэгшитгэл, тэнцэтгэл биш зэргийг бодох үед өнцгүүд 0, 30, 45, 60, 90 градусаар өгөгдөх нь их элбэг байдаг. Иймд эдгээр өнцгүүдийн тригнометрийн функцуудын утгыг цээжээр мэдэж байх хэрэгтэй. Үндсэн 4 функцыг оруулан тооцвол эдгээр утгууд 20 байна. Эдгээрийн утгыг санахгүй байвал хэрхэн тооцох аргыг энд тайлбарлая.

Нээгдсэн тоо: 5237 Нийтийн

Математикийн бодлого бодоход томьёонууд чухал үүрэгтэй гэдгийг бүгд мэддэг. Ерөнхий боловсролын сургуулийн математикийн хичээлийн агуулгад хамаарагдах томьёонууд нилээд олон тооны боловч бодлого бодоход эдгээрийн цөөн хэсгийг нь илүү ихээр ашигладаг. Жишээлбэл үржүүлэхийг хураангуй томьёонууд, квадрат тэгшитгэлийн шийдийг олох, Виетийн тоерем, прогрессийн томьёонууд, Пифагор, синус, косинусын теоремууд гээд бараг тогтмол ашигладаг томьёонуудыг дурдаж болно.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 64

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 89

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 98

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 120

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 124

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 174

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 114

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 109

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 121

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1162

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1086

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 838