Үндсэн курс ( 265 )

Математикийн хичээлийн бүх сэдвийг хамарсан ерөнхий курсын хичээлүүд. Та математикийн хичээлээ давтах, бодлого бодох, шалгалтанд бэлтгэхийн тулд ерөнхий ухагдхуун, үндсэн зарчмуудын талаар тодорхой хэмжээний мэдлэгтэй байх хэрэгтэй. Манай сайтын энэ хэсэгт математикийн хичээлтэй холбогдолтой онолын материалуудыг нийтлэж байх тул эндээс та өөртөө хэрэгтэй мэдээллийг олон авна гэдэгт итгэж байна.

Танд амжилт хүсье.  

Нээгдсэн тоо: 4829 Нийтийн

Хэрвээ X хэсэгт байх x болгоны хувьд бол тасралтгүй F(x) функцыг f(x) ийн эх функц гэнэ.

Жишээ
(-∞,+∞) мужид функц нь учраас ын эх функц болно. Мөн түүнчлэн x3+13 ийн уламжлал нь 3x2 тул x3+13 нь болгоны хувьд 3x2 ийн эх функц нь болно. 13 оронд дурын тогтмол авч болох нь ойлгомжтой.

Нээгдсэн тоо: 6878 Бүртгүүлэх

Хэрвээ f(x) функцын уламжлал нь x0 цэгт дифференциалчлагдаж байвал түүнийг f(x) функцын x0 цэг дээрх хоёрдугаар эрэмбийн уламжлал / гэж тэмдэглэнэ./ гэнэ.

  1. Хэрвээ функцын график нь дурын цэгт y=f(x) функцын графикийн муруйд татсан шүргэгчийн доор байрлаж байвал f(x) функцыг (a,b) интервалд гүдгэр гэнэ.
  2. Хэрвээ функцын график нь дурын цэгт y=f(x) функцын графикийн муруйд татсан шүргэгчийн дээр байрлаж байвал f(x) функцыг (a,b) интервалд хотгор гэнэ.

Нээгдсэн тоо: 4689 Төлбөртэй

Функцын дифференциалчлал тасалдалгүй байдлын хоорондын холбоо

Ямар нэг цэг дээр f(x) функц нь дифференциалчлагдаж байвал тэр цэгт функц тасралтгүй байна. Эсрэгээсээ энэ нь буруу байдаг. Тасралтгүй функц нь уламжлалгүй байж болно.
Мөрдлөг. Хэрвээ функц нь ямар нэгэн цэг дээр тасарч байвал энэ цэг дээр функц нь уламжлалгүй.

Жишээ
y=|x| функц нь /Зур. 3/ тасралтгүй. Гэвч x=0 цэгт функцын график нь шүргэгчгүй тул уламжлал байхгүй.

Нээгдсэн тоо: 5685 Бүртгүүлэх

үед a цэгийн орчимд дифференциалчлагддаг f(x), g(x) функцуудын хувьд
эсвэл, эсвэл хязгаар байна.
нөхцлүүд биелж байвал байна.

Нээгдсэн тоо: 12281 Нийтийн

Дифференцал

Функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэнэ. 
/Зур. 2 / дээр дифференциалын геометр утгыг үзүүллээ. Энд df=CD

Нээгдсэн тоо: 3754 Төлбөртэй

Уламжлал.

Ямар нэгэн f(x) функцын цэгүүд дээрх утгуудыг авч үзье. аргументын өөрчлөлт гэх ба аргументын бага хэмжээний өөрчлөлтийг үзүүлнэ. Цэгүүд дээрх функцын утгын ялгаварыг функцын өөрчлөлт гэдэг.
хязгаарыг x0 цэг дээрх f(x) функцын уламжлал гэнэ.
Хэрвээ энэ хязгаар нь утгатай байвал f(x) функцыг x0 цэг дээр дифференциалчлагддаг гэнэ. Функцын уламжлалыг
гэж тэмдэглэдэг.

Нээгдсэн тоо: 7662 Бүртгүүлэх

x нь a д тэмүүлэх үед дурын ε>0 хувьд нөхцлийг хангах ε тооноос хамаарсан δ(ε) тоо олдож байвал L тоог f(x) функцын хязгаар гэнэ.
гэж тэмдэглэнэ.
Энэ тодорхойлолт нь x нь a -д ойртох тутам f(x) функцын утга нь L тоонд хязгааргүй ойртоно гэдгийг илэрхийлж байна. Хязгаарын геометр утга нь дурын ε>0 хувьд x нь (α-δ, α+δ) мужид байхад функцын утга нь мужид орших δ тоог олж болно. Тодорхойлолт ёсоор функцын аргумент нь зөвхөн a -д ойртдог болохоос биш энэ утгыг авахгүй гэдгийг анхааралдаа авах хэрэгтэй. Энийг ямар ч функцын хязгаарыг олохдоо түүний тасралтын цэг дээр санаж байх хэрэгтэй.

Нээгдсэн тоо: 3935 Бүртгүүлэх

Тоон дараалал

Натурал тоон цувааг авч үзье.

1, 2, 3, … ,n-1, n, …

Энэ цувааны тоо бүрийг тодорхой дүрмийн дагуу ямар нэгэн un тоогоор соливол шинэ тоон цуваа үүснэ.
тэмдэглэгээ

Нээгдсэн тоо: 1611 Төлбөртэй

Нэг болон хоёр үл мэдэгдэгчтэй тэнцэл биш, тэнцэл бишийн системүүдийг функцын графикаар ойролцоогоор бодож болдог. Нэг үл мэдэгдэгчтэй тэнцэл бишийг бодохдоо бүх гишүүдийг тэнцэл бишийн нэг талд гарган f ( x ) > 0  хэлбэрт оруулаад f ( x ) = 0 функцын графикийг байгуулна. Үүний дараа графикийг ашиглан функцын тэгүүдийг олно. Эдгээр нь X тэнхлэгийг хэд хэдэн хэсэгт хуваасан байх бөгөөд x-ийн аль хэсэгт функцын утга тэнцэл бишийн утгатай давхцаж байгааг тодорхойлно.
Жишээлбэл: функцын тэгүүд нь a,b /Зур. 30/ гэе. Тэгвэл графикаас f ( x ) > 0 байх хэсэг нь x<a ба x>b гэдэг нь тодорхой. Эдгээр хэсгийг тодруулсан байгаа. Энд > тэмдгийн оронд <,  ≤, ≥ тэмдгүүдийн аль нь ч байж болно.

Нээгдсэн тоо: 2534 Төлбөртэй

Дурын нэг болон хоёр үл мэдэгдэгчтэй тэгшитгэл, тэгшитгэлийн системүүдийг функцын графикаар ойролцоогоор бодож болдог. Хоёр үл мэдэгдэгчтэй тэгшитгэлийн системийг бодохдоо тэгшитгэл бүрийг x ба y ээс хамаарсан функционал хамаарал гэж үзээд тэдгээрийн графикийг байгуулна. Графикуудын огтлолцлын цэгийн координат нь x ба y үл мэдэгдэгчдийн утга болно.

Жишээ 1
тэгшитгэлийн системийг бод.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 63

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 89

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 98

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 120

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 124

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 174

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 114

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 109

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 121

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1162

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1086

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 838