Үндсэн курс ( 265 )

Математикийн хичээлийн бүх сэдвийг хамарсан ерөнхий курсын хичээлүүд. Та математикийн хичээлээ давтах, бодлого бодох, шалгалтанд бэлтгэхийн тулд ерөнхий ухагдхуун, үндсэн зарчмуудын талаар тодорхой хэмжээний мэдлэгтэй байх хэрэгтэй. Манай сайтын энэ хэсэгт математикийн хичээлтэй холбогдолтой онолын материалуудыг нийтлэж байх тул эндээс та өөртөө хэрэгтэй мэдээллийг олон авна гэдэгт итгэж байна.

Танд амжилт хүсье.  

Нээгдсэн тоо: 43780 Нийтийн

Энэхүү хичээлээр бид квадрат тэгшитгэлтэй холбогдолтой шийдийг олох томьёо, Виетийн терем, квадрат гурван гишүүнтийг үржвэрт задлах талаар авч үзэх болно.
хэлбэрийн тэгшитгэлийг квадрат тэгшитгэл гэдэг. a, b тоонуудыг үл мэдэгдэгчийн коэффициентүүд харин cсул гишүүн гэдэг. a≠0 байх илэрхийллийг квадрат гурван гишүүнт гэнэ.

Нээгдсэн тоо: 2476 Бүртгүүлэх

Хувьсах хэмжигдхүүн нь туршилтын үр дүнд тодорхой магадлалтайгаар бодит утга авч байвал түүнийг санамсаргүй гэж нэрлэнэ. Хэрвээ сөрөг биш X хувьсагчийг pi магадлалтайгаар xi утгыг авах харгалзааг тодорхойлох

функц байвал X санамсаргүй хэмжигдхүүнийг дискрет гэдэг.

Нээгдсэн тоо: 9963 Нийтийн

Магадлалын аксиом тодорхойлолт

Эгэл үзэгдлүүдийн олонлог E өгөгдсөн ба үзэгдэл бүрт :

  • P(A)≥0
  • хос харш үзэдлүүдийн хувьд:  тэнцэл биелнэ,
  • P(E)=1

харгалзсан цорын ганц P(A) тоо байна гэж үзье. Тэгвэл E олонлогийн үзэгдлүүдэд магадлал байна. P(A) тоог A үзэгдлийн магадлал гэж хэлнэ.

Нээгдсэн тоо: 9295 Төлбөртэй

Магадлалын онолд үзэгдэл гэдгийг санамсаргүй төгсгөлтэй туршилтаар тохиолдох эсвэл эс тохиолдох дурын үр дүнг ойлгоно. Ийм туршилтын хамгийн энгийн үр дүнг / жишээлбэл зоосон мөнгийг хаяхад тоогоор эсвэл сүлдээрээ унах, хөзөр дундаас нэгийг сугалахад тамга гарч ирэх, шоог хаяхад тодорхой тоо гарч ирэх г.м / эгэл үзэгдэл гэнэ.
Эгэл үзэгдлүүдийн олонлог E -г эгэл үзэгдлийн орон зай гэдэг. Шоо шидэхэд энэ орон зай нь зургаа харин хөзөрөөс карт сугалахад 52 эгэл үзэгдлээс бүрдэнэ. Үзэгдэл нь нэг эсвэл хэд хэдэн эгэл үзэгдлээс бүрдэж болно. Жишээ нь : Хөзрөөс карт сугалахад дараалан хоёр тамга гарч ирэх, шоог гурван удаа хаяхад нэг ижил буух тоо г.м  Тэгвэл үзэгдэл гэдгийг эгэл үзэгдлийн орон зайны дурын дэд олонлог гэж тодорхойлж болно.

Нээгдсэн тоо: 5353 Бүртгүүлэх

Олонлогийг латин цагаан толгойн том, элементийг жижиг үсгээр нь тэмдэглэдэг. энэ бичлэг нь a нь R олонлогийн элемент ба энэ олонлогт харьяалагдана гэснийг илэрхийлнэ. Эсрэгээр a нь R олонлогт харьяалагдахгүй гэдгийг гэж бичнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг эсрэгээрээ B олонлогийн элемент бүр нь A олонлогт харьяалагддаг байвал эдгээрийг тэнцүү олонлогууд (A=B) гэнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг бол A олонлог нь B олонлогт багтсан эсвэл A олонлог нь B олонлогийн дэд олонлог гэж хэлдэг. /Зур. 1/ Энэ тохиолдлыг гэж бичнэ. Дурын A олонлогийн хувьд багтаалт хүчинтэй.

Нээгдсэн тоо: 2924 Төлбөртэй

Үндсэн ойлголт. Олонлогийн жишээ

Олонлог ба олонлогийн элемент гэдэг нь үгээр утга гаргасан тодорхойлолт байдаггүй суурь ойлголтуудад хамаарагдана. Иймээс тогтсон ерөнхий шинжтэй юмсын цуглуулгын талаар олонлог ба олонлогийн элемент гэсэн яриа үүснэ. Номын сангийн номууд, зогсоол дээрх автомашинууд, тэнгэрийн одод, дэлхийн ургамал амьтны аймаг гэх мэт нь бүгд олонлогийн жишээ юм.
Төгсгөлөг тоотой элементээс бүтсэн олонлогийг төгсгөлөг гэнэ. Жишээ нь: номын хуудас, сургуулийн сурагчид г.м
Нэг ч элементгүй олонлогийг хоосон гэнэ. Жишээ нь: далавчтай заануудын олонлог, sinx=2 тэгшитгэлийн шийдийн олонлог г.м

Нээгдсэн тоо: 4791 Нийтийн

Зарим тодорхой интегралууд



Нээгдсэн тоо: 2651 Нийтийн

Тодорхой интегралыг математик, физик, механик, астроном зэрэг олон салбарт ашигладаг. Бид энд зөвхөн хоёр жишээ авч үзье.

Эргэлдэх биеийн эзэлхүүн

OX тэнхлэг, x=a, x=b шулуунууд, f(x) функцын графикаар хязгаарлагдсан муруй шугаман трапецыг OX тэнхлэгийг тойруулан эргүүлэхэд гарах биетийг авч үзье. /Зур. 10/

Нээгдсэн тоо: 4577 Төлбөртэй

[a,b] хэрчимд өгөгдсөн энэ хэрчимдээ өөрийн тэмдгээ хадгалсан f(x) тасралтгүй функцыг авч үзье. /Зур. 8/ [a,b] хэрчим, x=a, x=b шулуун болон функцын графикаар хязгаарлагдсан дүрсийг муруй шугаман трапец гэдэг. Муруй шугаман трапецын талбайг олохдоо дараах теоремыг ашигладаг.
Хэрвээ f нь [a,b] хэрчимд тасралтгүй, сөрөг биш  функц байгаад F нь энэ хэрчимд түүний эх функц нь бол харгалзах муруй шугаман трапецын талбай S нь [a,b] хэрчим дэх эх функцын өөрчлөлттэй тэнцүү.

Нээгдсэн тоо: 4048 Бүртгүүлэх

Хэсэгчлэн интегралчлах.

Хэрвээ u(x) , v(x) функцууд нь тасралтгүй нэгдүгээр эрэмбийн уламжлалтай, гэсэн интегралтай байвал гэсэн интеграл байхаас гадна тэнцэл биелж байна. Хураангуй бичлэг нь болно.
Хэсэгчлэн интегралчлах ба үржвэрийн дифференциалууд нь харилцан эсрэг үйлдлүүд гэдгийг сануулъя.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 63

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 89

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 98

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 120

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 124

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 174

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 114

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 109

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 121

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1162

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1086

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 838