Математикийн хичээлүүд ( 258 )

Математикийг шинжлэх ухааны хаан гэж зүгээр ч нэг нэрлээгүй юм. Учир нь математик бол шинжлэх ухааны голлох салбаруудын суурь болж байдаг. Математикийг ашигладаггүй салбар гэж байхгүй. Яагаад ерөнхий боловсролын сургуулиудад математикийн хичээлд илүү анхаарал хандуулан заадаг нь үүнтэй холбоотой. Математикт сайн сурагчид бусад хичээлдээ сайн байдаг гэдгийг бүгд мэднэ. Үүний гол нууц нь математик оюун ухаан, сэтгэн бодох, биеэ дайчлах чадварыг хөгжүүлэхэд онцгой нөлөө үзүүлдэгт байгаа юм. Хүн бүр математикч болох албагүй ч энэхүү ухаанд тодорхой хэмжээнд суралцсан байх гарцаагүй шаардлагатай. Хүмүүсийн дунд математикийг их хүнд хичээл ухаантай хүмүүс л сурдаг гэсэн буруу ойлголт их тархсан байдаг. Энэ бол ташаа зүйл шүү. ЕБС-ийн математикийн хөтөлбөр бол хүн бүр мэдэж байж хамгийн анхан шатны суурь ухагдхуун тул хүүхэд бүр сурах бүрэн боломжтой зүйл. Хамгийн гол нь хэдэн үндсэн ойлголтуудыг сайн ойлгосон байхад бусад нь түүнээс дагалдан гардаг учраас магадгүй хамгийн сонирхолтой болоод амархан хичээлүүдийн нэг байж ч мэднэ шүү.

Танд амжилт хүсье

Нээгдсэн тоо: 19021 Нийтийн

Дурын нэгээс их n ба k натурал тоо , сөрөг биш a ба b тоонуудадын хувьд дараах тэнцлүүд хүчинтэй.

Нээгдсэн тоо: 8959 Нийтийн

Үржүүлэхийн хураангуй томьёонууд. Эдгээр томьёонууд математикийн бодлого бодоход тогтмол ашиглагдаж байдаг тул цээжлэх хэрэгтэй.

Нээгдсэн тоо: 5788 Нийтийн

Хоёр харьцааны тэнцүү чанар нь порпорц юм.

a, d - захын гишүүд, b, c - дунд гишүүд

Нээгдсэн тоо: 10344 Нийтийн

Томьёоны бичлэгт ашигласан тэмдэглэгээнүүд.

Нээгдсэн тоо: 2377 Бүртгүүлэх

Хувьсах хэмжигдхүүн нь туршилтын үр дүнд тодорхой магадлалтайгаар бодит утга авч байвал түүнийг санамсаргүй гэж нэрлэнэ. Хэрвээ сөрөг биш X хувьсагчийг pi магадлалтайгаар xi утгыг авах харгалзааг тодорхойлох

функц байвал X санамсаргүй хэмжигдхүүнийг дискрет гэдэг.

Нээгдсэн тоо: 9599 Нийтийн

Магадлалын аксиом тодорхойлолт

Эгэл үзэгдлүүдийн олонлог E өгөгдсөн ба үзэгдэл бүрт :

  • P(A)≥0
  • хос харш үзэдлүүдийн хувьд:  тэнцэл биелнэ,
  • P(E)=1

харгалзсан цорын ганц P(A) тоо байна гэж үзье. Тэгвэл E олонлогийн үзэгдлүүдэд магадлал байна. P(A) тоог A үзэгдлийн магадлал гэж хэлнэ.

Нээгдсэн тоо: 8883 Төлбөртэй

Магадлалын онолд үзэгдэл гэдгийг санамсаргүй төгсгөлтэй туршилтаар тохиолдох эсвэл эс тохиолдох дурын үр дүнг ойлгоно. Ийм туршилтын хамгийн энгийн үр дүнг / жишээлбэл зоосон мөнгийг хаяхад тоогоор эсвэл сүлдээрээ унах, хөзөр дундаас нэгийг сугалахад тамга гарч ирэх, шоог хаяхад тодорхой тоо гарч ирэх г.м / эгэл үзэгдэл гэнэ.
Эгэл үзэгдлүүдийн олонлог E -г эгэл үзэгдлийн орон зай гэдэг. Шоо шидэхэд энэ орон зай нь зургаа харин хөзөрөөс карт сугалахад 52 эгэл үзэгдлээс бүрдэнэ. Үзэгдэл нь нэг эсвэл хэд хэдэн эгэл үзэгдлээс бүрдэж болно. Жишээ нь : Хөзрөөс карт сугалахад дараалан хоёр тамга гарч ирэх, шоог гурван удаа хаяхад нэг ижил буух тоо г.м  Тэгвэл үзэгдэл гэдгийг эгэл үзэгдлийн орон зайны дурын дэд олонлог гэж тодорхойлж болно.

Нээгдсэн тоо: 4993 Бүртгүүлэх

Олонлогийг латин цагаан толгойн том, элементийг жижиг үсгээр нь тэмдэглэдэг. энэ бичлэг нь a нь R олонлогийн элемент ба энэ олонлогт харьяалагдана гэснийг илэрхийлнэ. Эсрэгээр a нь R олонлогт харьяалагдахгүй гэдгийг гэж бичнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг эсрэгээрээ B олонлогийн элемент бүр нь A олонлогт харьяалагддаг байвал эдгээрийг тэнцүү олонлогууд (A=B) гэнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг бол A олонлог нь B олонлогт багтсан эсвэл A олонлог нь B олонлогийн дэд олонлог гэж хэлдэг. /Зур. 1/ Энэ тохиолдлыг гэж бичнэ. Дурын A олонлогийн хувьд багтаалт хүчинтэй.

Нээгдсэн тоо: 2765 Төлбөртэй

Үндсэн ойлголт. Олонлогийн жишээ

Олонлог ба олонлогийн элемент гэдэг нь үгээр утга гаргасан тодорхойлолт байдаггүй суурь ойлголтуудад хамаарагдана. Иймээс тогтсон ерөнхий шинжтэй юмсын цуглуулгын талаар олонлог ба олонлогийн элемент гэсэн яриа үүснэ. Номын сангийн номууд, зогсоол дээрх автомашинууд, тэнгэрийн одод, дэлхийн ургамал амьтны аймаг гэх мэт нь бүгд олонлогийн жишээ юм.
Төгсгөлөг тоотой элементээс бүтсэн олонлогийг төгсгөлөг гэнэ. Жишээ нь: номын хуудас, сургуулийн сурагчид г.м
Нэг ч элементгүй олонлогийг хоосон гэнэ. Жишээ нь: далавчтай заануудын олонлог, sinx=2 тэгшитгэлийн шийдийн олонлог г.м

Нээгдсэн тоо: 4599 Нийтийн

Зарим тодорхой интегралууд



Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 151

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 313

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 197

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124